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Abstract: As an important branch of federated learning, vertical federated learning (VFL) enables multiple institutions to train on the same 
user samples, bringing considerable industry benefits. However, VFL needs to exchange user features among multiple institutions, which 
raises concerns about privacy leakage. Moreover, existing multi-party VFL privacy-preserving schemes suffer from issues such as poor reli⁃
ability and high communication overhead. To address these issues, we propose a privacy protection scheme for four institutional VFLs, named 
FVFL. A hierarchical framework is first introduced to support federated training among four institutions. We also design a verifiable repli⁃
cated secret sharing (RSS) protocol (32 )-sharing and combine it with homomorphic encryption to ensure the reliability of FVFL while ensuring 
the privacy of features and intermediate results of the four institutions. Our theoretical analysis proves the reliability and security of the pro⁃
posed FVFL. Extended experiments verify that the proposed scheme achieves excellent performance with a low communication overhead.
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1 Introduction

The development of big data has promoted the rise of ar⁃
tificial intelligence, which plays a vital role in modern 
society. In various fields, such as economics, climate 
research, personalized services, and medical services, 

the collection and analysis of data provide important support 
for researchers. However, with the massive data collection and 
analysis, some data privacy issues have arisen. As an emerg⁃
ing technology of artificial intelligence, federated learning[1] 
enables users to use private data for model training locally 
and share gradients under the coordination of the server, to ob⁃
tain a higher-precision global model. Federated learning pro⁃
tects user data by eliminating the need for data disclosure.

Vertical federated learning (VFL)[2] enables multiple institu⁃
tions to train on the same user samples and has received exten⁃
sive attention from both industry and academia. For example, 
it facilitates federated analysis of financial data, where infor⁃

mation about the same user may come from different banks. 
However, VFL needs to share user features or intermediate 
training results among multiple institutions, raising concerns 
about user data privacy leakage.

Some schemes propose to use secure multi-party computa⁃
tion[3] to address the VFL privacy leakage issue[4–6]. NI et al.[7] 
proposed FedVGCN, a federated graph convolutional network 
(GCN) learning paradigm suitable for node classification tasks. 
Participants exchange intermediate results under homomor⁃
phic encryption, thus protecting the data privacy of partici⁃
pants. Similarly, YANG et al.[8] proposed a distributed logistic 
regression privacy protection scheme using homomorphic en⁃
cryption and eliminated the third-party coordinator. Although 
the above schemes guarantee the feature or label privacy of the 
participating parties, they only support two-party VFL and can⁃
not be applied to multi-party joint training. Therefore, some 
multi-party VFL privacy protection schemes have been pro⁃
posed[9–10]. LI et al. [9] proposed a tree-based multi-party VFL 
privacy-preserving system, using homomorphic encryption 
and differential privacy to protect histogram privacy. However, 
this scheme requires a large communication overhead, and the 
model performance suffers due to the addition of noise. XIE et 
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al. [10] proposed a multi-party VFL privacy protection scheme 
MP-FedXGB using secret sharing. Each participant directly 
performs model training on the secret shares, resulting in a 
large communication overhead. These multi-party VFL 
schemes not only require a high communication overhead but 
also have poor reliability. Participants are not allowed to exit. 
Once a participant exits, model training will be interrupted.

Taking into account the issues of poor reliability and high 
communication overheads in existing schemes, we propose a 
privacy-preserving VFL scheme that supports four-party feder⁃
ated training, named FVFL. This scheme supports four institu⁃
tions for VFL training, consisting of three institutions with in⁃
tersection feature sets (passive and unlabeled) and one institu⁃
tion with a different feature set (active and labeled) from these 
three institutions. First, the three passive parties utilize the 
proposed repeated secret-sharing algorithm to realize the pri⁃
vate summation of intersection features under overlapping 
user sets. The proposed repeated secret-sharing algorithm sat⁃
isfies the requirement that the feature sums of three passive 
parties can still be recovered when one passive party quits the 
secret reconstruction process. Then, any of the three passive 
parties can perform model training with the active party to re⁃
alize the function of four-party federated training. This en⁃
sures a low communication overhead and high reliability dur⁃
ing VFL training in multiple institutions.

The contributions of this paper include the following aspects:
1) We propose an effective four-party VFL federated train⁃

ing framework, which reduces the system communication over⁃
head through a hierarchical structure, and any of the three pas⁃
sive parties cooperates with the active party to achieve VFL 
training on four-party data.

2) We design (32 )-sharing, a verifiable replicated secret 
sharing (RSS) protocol. Any two parties can cooperate to re⁃
cover the sum of the three-party features, and the protocol 
only requires additional operations with a low computational 
overhead.

3) Our theoretical analysis proves the security of the 
scheme. Experimental results verify the advantages of FVFL 
in terms of model performance and communication overhead.

The remainder of this paper is organized as follows. Section 
2 introduces the work related to VFL privacy protection. Sec⁃
tion 3 provides an overview of the FVFL system model, threat 
model, and security requirements. Section 4 presents the 
FVFL construction details. Section 5 proves the safety of the 
proposed FVFL, and Section 6 demonstrates the effectiveness 
of FVFL through experiments. Finally, the paper is concluded 
in Section 7.
2 Related Work

VFL enables multiple institutions to conduct model training 
on the same user samples in a distributed manner. While this 
approach has received widespread attention in both academia 

and industry, concerns about privacy leakage among partici⁃
pants have become increasingly prominent. Some 
schemes[11–12] propose the use of cryptography technology to 
encrypt intermediate results to protect data privacy. However, 
they all require a third party to act as a coordinator for sched⁃
uling the training process. FANG et al.[13] proposed a VFL pri⁃
vacy protection scheme that cancels the third party and uses 
secret sharing to avoid leakage of intermediate information in 
the training process, thereby enabling safe model prediction. 
However, the solutions mentioned above only support VFL 
training between two institutions. Obviously, multi-party VFL 
would better meet actual needs.

Therefore, several VFL privacy-preserving schemes support⁃
ing multi-party joint training have been proposed[14–15]. WU et 
al. [16] proposed a vertical decision tree scheme to preserve the 
privacy of intermediate information. In this approach, each par⁃
ticipant first uses homomorphic encryption to generate statisti⁃
cal information and then employs secret sharing to determine 
the best split of tree nodes. Finally, the secret is reconstructed, 
and each participant updates the model with encrypted data. 
However, this scheme requires secret segmentation and trans⁃
mission of the homomorphic encrypted ciphertext, resulting in 
a significant communication overhead. HUANG et al. [17] pro⁃
posed a multi-party VFL privacy protection scheme designed 
for generalized linear models. Participants first segment the 
gradients using secret sharing algorithms, and then homomor⁃
phically encrypt the segmented gradients and propagate them 
to each other. Ultimately, the receiver decrypts and recon⁃
structs the gradient, thereby achieving gradient privacy protec⁃
tion. However, this scheme has a high communication over⁃
head and is limited to simple linear models.

In addition, the schemes mentioned above face the issue of 
poor reliability. If any participant is accidentally discon⁃
nected, the training will be interrupted. Therefore, it is essen⁃
tial to design a multi-party VFL privacy protection scheme 
with high reliability and a limited communication overhead.
3 Problem Description

In this section, we outline the FVFL system model, ana⁃
lyze potential security threats, and then describe the security 
requirements.
3.1 System Model

The FVFL system model mainly includes two types of enti⁃
ties: one active party and three passive parties. The architec⁃
ture of the FVFL system is shown in Fig. 1.

1) Active participant: The active party is the organization 
(such as an operator) that owns the label among the four orga⁃
nizations and has a different set of features compared to the 
three passive parties. The active party plays a leading role in 
the four-party VFL training, denoted as P0. After the three pas⁃
sive parties perform (32 )-sharing, P0 and any of the parties use 
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the data of the four institutions for model training. Further⁃
more, the intermediate results are encrypted using a homomor⁃
phic encryption algorithm to ensure data privacy.

2) Passive participants: Three institutions with intersection 
features (such as three banks) are passive parties of FVFL and 
do not have labels, denoted as Pi, i ∈ {1, 2, 3 }. Before con⁃
ducting model training with P0, the three passive parties uti⁃
lize the proposed verifiable RSS protocol (32 )-sharing for fea⁃
ture sharing. Through this protocol, Pi can obtain the sum of 
the intersection features of users overlapping in three institu⁃
tions. Then, according to the hierarchical structure, any party 
in Pi performs model training with the active party P0 of an⁃
other layer.
3.2 Threat Model

Participants may not be completely trustworthy and could 
exhibit malicious behavior. In addition, there may be external 
attackers on the network that want to steal private data from 
participants or hinder model training. Next, we analyze the po⁃
tential threats faced by VFL participants and the network.

First, assuming that the passive parties Pi are malicious in 
the RSS process, they may transmit illegal information. For ex⁃
ample, during the secret split phase, they may distribute the 
wrong secret shares to other parties, making it impossible to 
reconstruct the secret. During the secret reconstruction phase, 
Pi may transmit the wrong secret shares to the partner or mali⁃
ciously exit the reconstruction process, causing the other party 
to fail to recover the correct secret.

Second, during the model training process with the active 
party P0, the passive party Pi will honestly conduct the train⁃
ing, but wants to steal the other party’s private data from the 
intermediate results.

Finally, we assume that there is a malicious attacker in the 
network, which wants to steal secret shares or intermediate re⁃

sults by listening to the channel to infer the private data of the 
participants.
3.3 Security Requirements

Considering the possible security threats of FVFL, the fol⁃
lowing security requirements should be met.

1) Confidentiality: During the process of secret sharing, ma⁃
licious Pi or attackers may infer the secrets of other partici⁃
pants from the received or stolen secret shares. In addition, P0 and Pi may infer each other’s privacy data through intermedi⁃
ate results of interaction during model training. Therefore, 
FVFL should be able to ensure the confidentiality of the par⁃
ticipant data.

2) Reliability: When Pi is performing secret reconstruction 
or model training with P0 , it may subjectively or passively 
exit the system, which makes it impossible to reconstruct the 
secret or directly interrupt the model training. Therefore, it 
is necessary to ensure that even if any participants exit, 
FVFL can still reconstruct the secret and perform model 
training normally.

3) Verifiability: Malicious Pi may distribute or transmit 
wrong secret shares to other parties during secret splitting or 
reconstruction, making it impossible to recover the secret. 
Therefore, FVFL needs to ensure that Pi transmits the correct 
share of the secret so that the secret can be reconstructed.
4 Construction Details

In this section, we introduce the construction details of the 
proposed FVFL, and the symbols involved in this paper are 
summarized in Table 1.
4.1 (3

2 )-Sharing Secret Split for FVFL

Three passive parties Pi generate random numbers a1, a2 and a3 through pseudo-random functions[18], satisfying a1 +
a2 + a3 = 0, where a1, a2 and a3 are held and saved by P1, P2 and P3, respectively. Assume that P1, P2 and P3 hold secrets 
x, y, and z, respectively (the values of each intersection feature 
at the three passive parties). They split the secret through a se⁃
cret split algorithm and distribute the secret shares to the 
other two passive parties.

As shown in Algorithm 1, the secret split algorithm in⁃
cludes three steps. First, each passive party splits its respec⁃
tive secrets x, y, and z into multiple secret shares. Then, the 

▼Table 1. Description of the symbols involved in this paper
Symbol

P0
Pi, i ∈ {1, 2, 3}

x, y, z
xi, yi, zi

H (·)

Description
Active participant (holding labels)

Passive participants
Secrets held by P1, P2 and P3 respectively

Secret shares
One-way hash function

▲Figure 1. Architecture of the proposed FVFL framework

Second layer

First layer

An active party

Three passive parties
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passive party hashes the secret shares. Finally, the three pas⁃
sive parties distribute secret shares and corresponding hash val⁃
ues to each other. This (32 )-sharing protocol ensures the privacy 
of the passive party’s secret and the verifiability of the secret 
share by introducing random numbers and hash operations.
Algorithm 1. (32 )--Sharing Secret Split

Input: a1, a2, a3, x, y, and z
Output: Secret shares and corresponding hash values of three 
passive parties
1: P1 splits secret x: x = x1 + x2 + x3.2: P2 splits secret y: y = y1 + y2 + y3.3: P3 splits secret z: z = z1 + z2 + z3.4: P1 calculates x^ = H ( x + a1 )p1, H ( x1 )p1, H ( x'2 )p1, and 

H ( x3 )p1, where x'2 = x2 + a1.5: P2 calculates y^ = H ( y + a2 )p2, H ( y1 )p2, H ( y'2 )p2, and 
H ( y3 )p2, where y'2 = y2 + a2.

6: P3 calculates z^ = H ( z + a3 )p3, H ( z1 )p3, H ( z'2 )p3, and 
H ( z3 )p3, where z'2 = z2 + a3.7: P1 sends ( x1, x'2 ), H ( x1 )p1, H ( x'2 )p1, H ( x3 )p1 and x^ to P2, 
and sends ( x'2, x3 ), H ( x1 )p1, H ( x'2 )p1, H ( x3 )p1 and x^ to P3.

8: P2 sends ( y1, y'2 ), H ( y1 )p2, H ( y'2 )p2, H ( y3 )p2 and y^ to P1, 
and sends ( y'2, y3 ), H ( y1 )p2, H ( y'2 )p2, H ( y3 )p2 and y^ to P3.

9: P3 sends ( z1, z'2 ), H ( z1 )p3, H ( z'2 )p3, H ( z3 )p3 and z^ to P1, 
and sends ( z'2, z3 ), H ( z1 )p3, H ( z'2 )p3, H ( z3 )p3 and z^ to P2.

Return: Secret shares and corresponding hash values of three 
passive parties.

4.2 (3
2 )-Sharing Secret Reconstruction for FVFL

Once each passive party receives the secret shares of the 
other two passive parties, it can recover the sum of the three-
party secrets by executing the secret reconstruction algorithm. 
At this stage, even if a passive party actively or passively with⁃
draws, the algorithm can still run normally. Assuming that P3 is accidentally disconnected during the secret reconstruction 
process, the following describes how P1 and P2 reconstruct the 
sum of the three-party secrets.

As shown in Algorithm 2, the secret reconstruction algorithm 
includes three steps. First, P1 and P2 send the different secret 
shares to each other. Then, P1 and P2 respectively use the hash 
function to determine the consistency of the received secret 
shares. Finally, P1 and P2 carry out secret reconstruction, re⁃
spectively, to obtain the sum of the secrets of the three parties.

Algorithm 2. (32 )-Sharing Secret Reconstruction

Input: x + a1, ( z1, z'2 ) , y + a2 and ( z'2, z3 ).

Output: x + y + z.
1: P1 sends x + a1 and ( z1, z'2 ) to P2.2: P2 sends y + a2 and ( z'2, z3 ) to P1.3: P1 calculates H ( y + a2 ), H ( z1 ), H ( z'2 ), and H ( z3 ) and de⁃

termines whether H ( y + a2 ) = y^, H ( z1 ) = H ( z1 ) p3
, 

H ( z'2 ) = H ( z'2 ) p3
, and H ( z3 ) = H ( z3 )p3 are valid.

4: P2 calculates  H ( x + a1 ), H ( z1 ), H ( z'2 ), and H ( z3 ) and de⁃
termines whether H ( x + a1 ) = x^, H ( z1 ) = H ( z1 )p3, 
H ( z'2 ) = H ( z'2 )p3, and H ( z3 ) = H ( z3 )p3 are valid.

5: If all the equations hold, P1 and P2 calculate x + a1 + y +
a2 + z1 + z'2 + z3 = x + y + z locally, respectively.

Return: x + y + z.
4.3 Homomorphic Encryption for FVFL

After the three passive parties perform the feature summa⁃
tion, any of them can cooperate with the active party P0 to per⁃
form model training to achieve four-party VFL training. Here, 
the homomorphic encryption algorithm is used to ensure the 
privacy of the intermediate results of the interaction. The spe⁃
cific execution process is as follows.

• P0 first uses the label to calculate the first-order deriva⁃
tive gi and the second-order derivative hi of the gradient, and 
then uses the homomorphic encryption algorithm to encrypt gi and hi, followed by sending the encrypted <gi> and <hi> to Pi.• After receiving the ciphertexts <gi> and <hi> , Pi uses 
them to calculate the local gradient histogram and sends the 
gradient histogram to P0.• P0 decrypts the gradient histogram sent by Pi, finds the 
optimal split point, and then sends it to Pi.• P0 and Pi determine which party has the best split point 
and then receive the sample division result of the party with 
the best split point.

• Both parties update the index between samples and tree 
nodes, as well as their respective tree models.
5 Security Analysis

In this section, we analyze the security and reliability of the 
proposed FVFL scheme.

Theorem 1. Although the passive party Pi is malicious, it 
must share a clear secret during RSS. In addition, if malicious 
Pi transmits incorrect secret shares, other passive parties will 
discover it.

Proof: According to the design of the secret sharing proto⁃
col, each Pi will transmit the secret shares and their corre⁃
sponding hash values to other passive parties during the secret 
distribution phase. For example, in the secret distribution 
phase, P1 must transmit ( x1, x'2 ), H ( x1 )p1, H ( x'2 )p1, H ( x3 )p1 and x^ to P2, as well as ( x'2, x3 ), H ( x1 )p1, H ( x'2 )p1, H ( x3 )p1 and x^ to P3. If P1 is compromised, it may transmit illegal x° +
a1 to P2 or P3 during the secret reconstruction phase. At this 
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time, P2 or P3 can judge that H ( x° + a1 ) = x^ is not estab⁃
lished through the hash, and thus perceive the malicious be⁃
havior of P1. Therefore, even if P1 is malicious, it must share a 
clear secret to make H ( x + a1 ) = H ( x + a1 )p1 valid. Simi⁃
larly, P2 and P3 can verify the legitimacy of the secret shares 
transmitted by P1 by judging whether H ( x1 ) = H ( x1 )p1, 
H ( x'2 ) = H ( x'2 )p1, etc. are established.

Theorem 2. The proposed FVFL scheme will not leak the 
private data of any participant during the secret sharing and 
model training stages.

Proof: Firstly, assume that P1 and P2 cooperate to recon⁃
struct the sum of the three-party secrets. In the secret recon⁃
struction phase, P1 and P2 need to transmit x + a1 and y + a2 to each other. According to the protocol settings, P1 holds x +
a1 and ( z1, z'2 ), and P2 holds y + a2 and ( z'2, z3 ). They can 
calculate the secret sum of the three parties ( x + a1 ) + ( y +
a2 ) + ( z1 + z'2 + z3 ) = x + y + z, respectively. Because P1 
does not know the random numbers a2 and a3 of P2 and P3, 
and P2 does not know the random numbers a1 and a3 of P1 and 
P3, they can only obtain y + a2 and z + a3, respectively, but 
fail to obtain y or z, thus ensuring the privacy of the passive 
party’s secret values.

Secondly, when the active party P0 conducts model training 
with any of the three passive parties Pi, P0 performs homomor⁃
phic encryption on the intermediate results to ensure data pri⁃
vacy. Moreover, Pi uses the sum of three-party data to perform 
model training, and it will not leak the data privacy of a single 
passive party.

Theorem 3. If one or two passive parties exit during secret 
reconstruction or model training, the proposed FVFL can still 
run as usual.

Proof. Assuming P1 exits the secret reconstruction phase 
maliciously or passively, the remaining P2 and P3 can still suc⁃
cessfully reconstruct the sum of the three-party secrets. This 
is because P2 and P3 not only hold their respective secrets y 
and z, but also hold P1  s secret shares ( x1, x'2 ) and ( x'2, x3 ), 
respectively. Therefore, P2 and P3 can collaborate to cal-
culate ( y + a2 ) + ( z + a3 ) + ( x1 + x'2 + x3 ) = x + y + z. Fur⁃
thermore, during model training, since all three passive parties 
hold the sum of their secrets, P0 only needs to collaborate with 
any of the three passive parties to achieve model training.
6 Performance Evaluation

In this section, we evaluate the advantages of the proposed 
FVFL in terms of communication overhead and performance 
through extended experiments.
6.1 Experimental Setup

Experiments ran on the Ubuntu 18.04.6 LTS operating sys⁃
tem, equipped with 62 GB of memory and an Intel(R) Xeon(R) 
CPU E5-2650 v4 clocked at 2.20 GHz. We performed Secure⁃

Boost model training on the FATE v1.9.0 platform to verify 
the effectiveness of FVFL. SecureBoost is a decentralized ver⁃
tical federated learning security tree model based on gradient-
boosting decision trees. It supports multi-party cooperation, 
that is, federated training of multiple unlabeled data holders 
and one labeled data holder. MP-FedXGB is the benchmark, 
as it also supports four-party VFL federated training.

The experiments were carried out on two datasets: GiveMe⁃
SomeCredit and UCI Credit Card. The data in the GiveMeSo⁃
meCredit dataset was used to determine whether users would 
suffer financial difficulties in the future. It included 150 000 
data samples and 10 features. The data in the UCI Credit Card 
dataset was used to judge whether a person would default, and 
it included 30 000 data samples and 24 features. We split 
both datasets into 25 000 training samples and 5 000 testing 
samples. Features were converted into multi-dimensional vec⁃
tors using one-hot encoding, distributed to active and passive 
parties at a ratio of [0.5, 0.5], followed by the passives being 
distributed at a ratio of [0.2, 0.3, 0.5].

The experiments verified the training and prediction time of 
FVFL under different hyperparameter settings. The param⁃
eters and default settings involved in the experiment are 
shown in Table 2. Each experiment was performed five times, 
and the average results were reported.
6.2 Communication Overhead Comparisons

In this section, we discuss the communication overhead re⁃
quired for FVFL to perform four-party federated training, in⁃
cluding feature secret sharing among the three passive parties, 
as well as intermediate result interaction between the active 
party and any passive party. We compare the communication 
costs of FVFL and MP-FedXGB under the same settings.

1) Varying F. Fig. 2 shows the trends of communication 
costs for FVFL and MP-FedXGB on the two datasets as F in⁃
creases. Regardless of which data set, as F increases, the com⁃
munication overheads of the two schemes will gradually in⁃
crease. However, compared to MP-FedXGB, the communica⁃
tion overhead of FVFL is significantly lower. For example, 
when F=40, the amount of communication MP-FedXGB needs 
to transmit on both datasets is 118.4 times and 108.0 times 
that of FVFL, respectively. This is because according to the 
design of the FVFL scheme, only the feature shares need to be 
transmitted between the three passive parties, and then any of 
the three passive parties and the active party can perform 
model training. However, MP-FedXGB must use feature 

▼Table 2. Parameters and their default values
Parameter

F

T

D

I

Description
Number of features

Number of trees
Number of depths

Number of data samples

Value
{10, 20, 30, 40}

{3, 4, 5, 6, 7}
{3, 4, 5, 6, 7}

{5k, 10k, 15k, 20k, 25k}

Default
10
3
3

25k
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shares to perform model training among four parties, and its 
communication cost will be higher. The results show that our 
FVFL is more suitable for model 
training with more features.

2) Varying T. Fig. 3 shows 
the trends of communication 
costs of FVFL and MP-FedXGB 
on the two data sets as T in⁃
creases. Although the communi⁃
cation overheads of FVFL and 
MP-FedXGB increase with the 
increase of T, the communica⁃
tion cost of FVFL is always 
smaller than that of MP-
FedXGB. For example, when 
MP-FedXGB has three trees, its 
traffic on the two datasets is 
41.9 times and 37.9 times that 
of FVFL, respectively. This is 
because MP-FedXGB requires 
multiple rounds of iterations us⁃
ing parameter shares among the 
four participants and the coordi⁃
nator to build a tree model, 
while FVFL only needs to iter⁃
ate among two participants. The 
results show that FVFL is more 
suitable for multiple decision 
tree models.

3) Varying D. Fig. 4 shows the 
trends of communication costs of 
FVFL and MP-FedXGB on the 
two data sets as D increases. It 
can be seen that the communica⁃
tion overhead of FVFL will not 
change as D increases, but the 

communication cost of MP-
FedXGB will increase rapidly as 
D changes. Regardless of the 
value of D, the traffic of MP-
FedXGB is significantly higher 
than that of FVFL. As D in⁃
creases, the communication ad⁃
vantages of FVFL will become 
more prominent. The communi⁃
cation cost of FVFL will not 
change with the increase in D, 
because D is not involved in se⁃
cret sharing among the three pas⁃
sive parties. D is only involved 
in model training between the ac⁃
tive party and any passive party, 

but D does not affect the interaction of gradient information af⁃
ter homomorphic encryption.

4) Varying I. Fig. 5 shows the trends of communication 

▲Figure 2. Communication overheads for different numbers of features (F)

(a) GiveMeSomeCredit dataset (b) UCI Credit Card dataset

(a) GiveMeSomeCredit dataset (b) UCI Credit Card dataset
▲Figure 3. Communication overheads for different numbers of trees (T)

(a) GiveMeSomeCredit dataset (b) UCI Credit Card dataset
▲Figure 4. Communication overheads for different numbers of depths (D)
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costs of FVFL and MP-FedXGB on the two data sets as I in⁃
creases. Although the communication overheads of FVFL 
and MP-FedXGB increase with increasing I on both datasets, 
it is obvious that the communication overhead of FVFL is 

lower and increases slowly. This is because, to build the tree 
model, MP-FedXGB has to complete multiple rounds of itera⁃
tions among the four parties under the coordination of a third 
party. The results show FVFL is well suited for training on 
large datasets.
6.3 Model Performance Comparisons

We compare the performance of FVFL and MP-FedXGB 
in training SecureBoost models on the GiveMeSomeCredit 
and UCI Credit Card datasets, where the number of decision 
tree T and depth D increases from 3 to 5, respectively. The 
comparison is carried out mainly from three aspects: accu⁃
racy (ACC), F1 score, and area under curve (AUC), and the 
results are shown in Table 3. It can be seen that under the 
two variables T and D, the performance of FVFL is almost 
better than that of MP-FedXGB in various indicators. This 
can be attributed to the scheme design of FVFL, which uses 
the features of the four parties directly for model training by 
the active party and any of the three passive parties. How⁃
ever, the participants in MP-FedXGB have to reshape the 
model splitting criterion based on the secret share of each 
partys private data.
7 Conclusions

This paper proposes an FVFL privacy protection scheme 
that supports the federated training of four parties. FVFL intro⁃
duces a layered framework with three passive parties as one 
layer and active parties as another layer. Furthermore, a verifi⁃
able RSS algorithm is designed so that three passive parties 
can achieve the private summation of feature intersection sets. 
Moreover, the algorithm ensures that when a passive party ex⁃
its the secret reconstruction stage, the remaining two parties 
can still restore the sum of the three-party features. The active 
party cooperates with any of the three passive parties to 
achieve four-party VFL training. This ensures a low communi⁃
cation overhead and high reliability of the FVFL. Theoretical 
analysis and extended experiments have verified the security 
and effectiveness of our FVFL.
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▼Table 3. Model performance comparison under different parameters

T

D

3
4
5
3
4
5

GiveMeSomeCredit
FVFL

ACC
0.933 3

0.933 9

0.934 2

0.933 3

0.934 7

0.935 4

F1
0.245 7

0.244 2

0.247 4
0.245 7

0.280 5

0.278 2

AUC
0.827 0

0.829 5

0.829 9

0.827 0

0.828 6

0.847 9

MP-FedXGB
ACC

0.930 6
0.932 6
0.933 4
0.930 6
0.931 8
0.932 2

F1
0.213 1
0.235 8
0.292 9

0.213 1
0.201 4
0.264 6

AUC
0.719 4
0.746 5
0.749 7
0.719 4
0.737 9
0.738 3

UCI Credit Card
FVFL

ACC
0.823 2

0.824 2

0.825 8

0.823 2

0.824 4

0.824 8

F1
0.466 7

0.447 2
0.462 0
0.466 7

0.451 8

0.453 4

AUC
0.752 5
0.760 9
0.763 4
0.752 5
0.762 8
0.764 7

MP-FedXGB
ACC

0.822 5
0.823 7
0.824 9
0.822 5
0.823 9
0.824 3

F1
0.458 8
0.475 2

0.473 8

0.458 8
0.446 1
0.454 6

AUC
0.768 6

0.770 1

0.773 5

0.768 6

0.769 0

0.770 7

ACC: accuracy     AUC: area under curve

▲ Figure 5. Communication overheads for different numbers of data 
samples (I)
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