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system has been deployed in Guangzhou Shenzhen High-
Speed Railway and the experimental results verified its ef‑
fectiveness.

The remainder of this paper is organized as follows. Sec‑
tion 2 introduces the theory and principle of the DAS system. 
The proposed DAS system is designed and the data process‑
ing steps are given in Section 3. Experimental setup and re‑
sults are given in Section 4 and we conclude this paper in 
Section 5.
2 Theory and Principle

The DAS system based on phase-sensitive optical time-
domain reflectometry (ϕ-OTDR) [7] is introduced in this sec‑
tion, where the probe pulse signal is injected into the fiber 
and the sensing information is derived by analyzing the scat‑
ting signal. The probe pulse signal can be described as:

St = At exp [ i (ωt + ϕt ) ] , (1)
where At,  ωt and ϕt are the amplitude, angular frequency, 
and phase of probe pulse signal i is the imaginary unit.

The probe pulse transmits through the fiber and generates 
the Rayleigh scattering signals. Rayleigh scattering does not 
change the frequency of light[8], and the scattering signal can 
be described as:

Ss = Asexp[ i (ωt + ϕs ) ] , (2)
where As,  ωt and ϕs are the amplitude, angular frequency, 
and phase of the Rayleigh scattering signal. The amplitude 
and phase are related to the strain received by the fiber. 
Therefore, the vibration information can be sensed.

To demodulate the parameters of the scattering signal, the 
coherent detection technology is applied. In a coherent detec‑
tor, the local-oscillator (LO) signal and scattering signal work 
as inputs together and they should be at the near frequen‑
cies. Considering the heterodyne reception technology, the 
LO signal can be described as:

SO = AOexp[ i (ωO + ϕO ) ] , (3)
where AO, ωO and ϕO are the amplitude, angular frequency, 
and phase of the LO signal. ωIF = ωO - ωt ≠ 0 is the fre‑
quency difference between the LO signal and scattering sig‑
nal and represents the frequency of intermediate frequency 
signals.

The LO signal and scattering signal interfere and output 
two intermediate frequency signals after the hybrid. Two pho‑
todetectors convert the light signals into electrical signals, 
which can be described as:

ì
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ï

SI = 1
2 R [ ]As AO cos ( )ω IF t + ϕs - ϕO + A2

s + A2
o

SQ = 1
2 R [ ]As AO sin ( )ω IF t + ϕs - ϕO + A2

s + A2
o  . (4)

These medium-frequency electrical signals are down-
converted into baseband signals by digital signal processing, 
and the DC components are filtered. The AC electrical sig‑
nals are obtained as
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II = 1
2 RAs AO cos ( )ϕs - ϕO

IQ = 1
2 RAs AO sin ( )ϕs - ϕO  , (5)

where R is the response factor of the photodetector.
There amplitude As and phase ϕs can be demodulated as 

follows:
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As ∝ I 2
I + I 2

Q

ϕs ≈ arctan IQ

II
+ ϕO . (6)

3 System and Data Process
In this paper, we propose a DAS system as shown in Fig. 1. 

The laser generates a light signal, and one acoustic optical 
modulator (AOM) is utilized to modulate the probe pulse with 
a certain frequency shift. The AOM can achieve a high ex‑
tinction ratio (ER) to support the following accurate date pro‑
cess. To achieve enough sensing length, the probe pulse is 
amplified by an erbium doped fiber amplifier (EDFA) before 
being injected into the fiber. Then the amplified probe pulse 
transmits through the fiber and generates backscatter sig‑
nals. The Roman fiber amplifier (RFA) is utilized to keep 
probe pulse power sufficient during transmission. The scat‑
tering signals generated in different positions arrive at the 

▲Figure 1. Proposed distributed acoustic sensing (DAS) system

AOM: acoustic optical modulator EDFA: erbium doped fiber amplifier RFA: Roman fiber amplifier
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circulator at different times, and they can be distinguished in 
the time domain. For a specific scattering signal, it passes 
the circulator. The LO signal enters the coherent signal with 
the scattering signal, where the LO signal is one part light 
from the laser. As introduced in Section 2, the amplitude and 
phase of the scattering signal can be demodulated, which can 
be described as Ai,j and ϕi,j, where i represents this scattering 
signal is generated by the i-th probe pulse in the j-th position.

In the data processor, the vibration of vehicle detection 
and intrusion behavior recognition are realized based on the 
amplitude and phase information, and the detailed process is 
shown in Fig. 2. First, the denoising step is needed to 
achieve high accuracy. Then, the amplitude information is 
used to detect the vibration. The amplitudes generated by the 
i-th probe pulse are represented as the sequence 
[ Ai,1,  Ai,2,⋯,  Ai, m ], where m is the toal number of scattering 
signal sampled by ADC. The amplitude difference sequence 
[ ΔAi,1,  ΔAi,2,⋯,  ΔAi, m - 1 ] is calculated by ΔAi, k = | Ai, k + 1 -
Ai, k | , where k = 1, 2,⋯, m - 1. The peak value ΔAi, j repre‑
sents that the vibration occurs at the j-th position.

The short-term energy and short-term zero-crossing rate 
are used to detect the vibration position based on the ampli‑
tude sequence. Furthermore, the vibration may be caused by 
different reasons, and they can be classified into different vi‑
bration types. Supposing the vibration is detected at the j-th 
position in the i-th probe pulse, the phases at different times 
can be represented as sequence [ϕi, j,  ϕi + 1, j,⋯, ϕi + n, j], where n is the total number of record phases. [Δϕi, j, 
Δϕi + 1, j,⋯, Δϕi + n - 1, j] is the phase difference sequence, 
which corresponds to the vibration waveform modulation on 
the scattering signal, where Δϕi, j = ϕi + 1, j - ϕi, j.The time-frequency signal is obtained through a short-time 
Fourier transform of the phase difference sequence, and the 
features of the time-frequency signal are used in the follow‑
ing vibration classification. In detail, the key step of identify‑
ing vibration events is to select appropriate audio features to 
characterize the corresponding vibration waveform. In our 
system, we adopt the spectral image feature (SIF) of the 
phase difference sequence, which involves a short-time Fou‑
rier transform on the original sequence and the preprocess‑
ing of the two-dimensional time-frequency features.
4 Experimental Setup and Results

The proposed DAS system has been deployed in the 
Guangzhou Shenzhen High-Speed Railway. The sensing fiber 
is approximately 20 km long and is laid on railways through 
fixing with guardrails (Fig. 3). Through extensive testing and 
comparison of optical fiber deployment methods, it was 
found that the S-shaped optical fiber deployment has advan‑
tages in terms of the accuracy of vibration signal acquisition 
and accuracy of system identification for different events.

The laser generates the pulse light signal with a power of 
23 dBm at 1 550.12 nm. The split ratio is set as 1:1. The rep‑
etition time of the probe pulse is set as 0.4 ms, which can 
cover the round-trip time of the probe pulse in a 40-km fiber. 
The width of the probe pulse is 80 ns, which corresponds to 
the spatial resolution of 8 m. The frequency shift introduced 
by AOM is 80 MHz. In RFA, the wavelength of pump light is 
1 450 nm and the power is set as 21 dBm. The system can 
support the max sensing length of 40 km under these setups.

Fig. 4 shows a specific vibration signal. On the left, the 
time-domain signal and the frequency-domain signal are 
given, respectively. The time domain signal is the phase dif‑
ference sequence obtained from the above step, which shows 
the vibration waveform. The time-domain signal has several 
features and the frequency-domain signal is obtained by the 
Fourier transform. It can be observed that the frequency-
domain signal is between 0 to 2 500 Hz, and it mainly con‑
tains the low-frequency part (lower than 500 Hz) and high-
frequency part (higher than 2 000 Hz). The time-frequency 
spectrum signal shown on the right is obtained by the short-
time Fourier transform, and the colors correspond to different 

▲Figure 2. Proposed data processor

▲Figure 3. Fiber laying scenario
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frequencies.
Fig. 5 gives several time-frequency spectrum signals of dif‑

ferent situations, where Fig. 5(a) corresponds to the situation 
where there are no vehicles or intrusions, Fig. 5(b) the situa‑
tion where there is a vehicle but no intrusion, Fig. 5(c) the situ‑

ation where there are intrusions but no vehicle, and Fig. 5(d) 
the situation where there are both vehicles and intrusions. It 
can be seen that the proportion of high-frequency compo‑
nents varies. Based on this, we can design a classification al‑
gorithm to recognize different vibration situations. In our ex‑

▲Figure 4. Vibration signal

▲Figure 5. Time-frequency spectrum signals in different situations
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periment, the classification accuracy can achieve 90%.
5 Conclusions

In this paper, we propose one DAS system to realize vibra‑
tion detection and classification for railways. This system is 
based on φ -OTDR, and the amplitude and phase demodu‑
lated from scattering signals are analyzed to obtain the vibra‑
tion waveform. Further, the vibration waveform is converted 
to the time-frequency spectrum signals, which show the fre‑
quency feature and are used for vibration situation classifica‑
tion. This system has been deployed in Guangzhou Shenzhen 
High-Speed Railway, and the classification accuracy can 
achieve 90%.
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1 Introduction

Mobile video services have proliferated with the 
growth of wireless communications and the Inter‑
net, and video traffic had been expected to account 
for 82% of total network traffic by 2022. However, 

networks with limited capacity are struggling to support the 
growing number of mobile video users. The complex uncer‑
tainty of wireless channels limits transmission rates, while 
wired transmissions suffer from packet loss due to buffer con‑
gestion at routing nodes. For the former, there are well-known 
channel coding methods[1–3] that promise transmission rates 
close to the Shannon bound. For the latter, existing solutions 
mainly involve retransmission techniques or forward error cor‑
rection coding. The retransmission[4] does not require any re‑
dundant packets, but the extra round-trip time (RTT) in‑
creases the end-to-end delay of the entire video and therefore 
does not guarantee real-time video transmission. Forward er‑
ror correction (FEC) coding[5], by way of contrast, is of interest 
due to its ability to recover lost source packets without adding 
any RTT.

The well-known WebRTC uses an exclusive OR (XOR) -
based[6] FEC coding that generates new redundant packets by 

XORing the original packets. These redundant packets are 
sent to the receiver together with the original packets and the 
receiver recovers the lost packets according to the correspond‑
ing mapping relationships. There should be neither too many 
nor too few redundant packets, as this would result in waste or 
inadequate protection. Therefore, the FEC should adjust the 
number and size of redundant packets to the network environ‑
ment to balance reliability and latency. To select the appropri‑
ate level of redundancy to cope with dynamic network environ‑
ments, the WebRTC uses the current redundancy state to 
query the FEC redundancy for the next packet. The XOR en‑
coding and single-step adaptive algorithms described above to‑
gether form the FEC scheme for WebRTC.

Other FEC schemes also focus on improving packet loss re‑
covery through advanced encoding methods and adaptive algo‑
rithms. Examples of such methods include fountain codes[7], 
Raptor codes[8–9], and Reed-Solomon (RS) codes[10–11]. Among 
them, RS codes are widely used by the telecommunication in‑
dustry due to their superior protection capabilities. However, 
the drawback of RS codes is that decoding requires multiple 
matrix inversions, which results in extremely high computa‑
tional complexity. In situations where the matrix dimension is 
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too high, such as in high-definition video transmission with 
large packets, the decoding time may be too long to meet the 
needs of real-time transmission.

As for other adaptive algorithms, ATIYA et al. introduced a 
non-linear prediction method for automatic feature selec‑
tion[12], and EMARA et al. combined an ingenious coding 
scheme with a network adaptive algorithm for parameter up‑
dating[13]. However, these approaches relied solely on histori‑
cal network patterns to predict future patterns, overlooking the 
complex relationships that may exist between past and future 
patterns. To better exploit the correlation between current and 
previous network states in a weak network environment, 
CHENG et al. proposed a DeepRS[14] adaptive redundancy 
control algorithm in 2020. The algorithm uses a long short-
term memory (LSTM) network[15–16] to predict the probability 
of packet loss and dynamically adjusts the redundancy rate of 
the RS encoder. However, integrating the LSTM network with 
the underlying user datagram protocol (UDP) protocol requires 
significant engineering effort.

In response to the shortcomings of existing coding and 
adaptive algorithms, we propose a new coding scheme cover‑
ing low-density parity-check (LDPC) and RS to ensure 
smooth transmission of arbitrary definition video and design 
a multi-step Kalman filter-based adaptive algorithm for prac‑
tical deployment. The contributions in this paper are summa‑
rized as follows.

• We develop a hybrid FEC highly efficient encoding 
method to cope with continuous burst packet loss and different 
application scenarios. We design an encoding scheme of the 
LDPC code and the RS code in their respective optimal code 
length ranges. We optimize a progressive edge growth algo‑
rithm to get the LDPC coding matrix of the application layer. 
The coding scheme of the design system could cover various 
source code lengths and reduce the computational complexity 
of codes.

• We propose a Kalman filter-based multi-step adaptive 
method for video transmission. 
The system makes multi-step pre‑
dictions based on packet loss 
feedback and then predicts the 
coding code rate based on the de‑
coding terminal redundancy. It 
turns out that our method always 
maintains a high data recovery ra‑
tio with the interval change of the 
packet loss rate.

The rest of this paper is orga‑
nized as follows. Section 2 de‑
scribes the system architecture. 
Next, Section 3 proposes a frame-
level partitioning method. Then, 
we present the hybrid coding 
method in Section 4. The code 

rate adaptation algorithm is evaluated in Section 5. Sections 6 
and 7 give the evaluation and conclusions.
2 System Architecture

The prototype system verification framework for combating 
weak network conditions in video and audio transmission is 
shown in Fig. 1. The system uses the application-layer end-to-
end FEC technology at the video frame level, and selects the 
optimal bit rate based on the network status information fed 
back by the terminal. Metrics such as historical packet loss 
rates and throughput are used to predict future network states 
and adaptive packet loss compensation is performed to opti‑
mize overall performance.

The sender serves as the video input source to the system, 
providing raw video streams that are processed into multime‑
dia stream files with frame structures through generic protocol 
encoding. Before transmission, the sender side establishes a 
channel for transmission by selecting the optimal bitrate 
based on the network status information feedback from the ter‑
minal. To improve the reliability of end-to-end mobile video 
transmission, the sender-side encoder performs frame-level 
FEC (we give a frame-level partitioning method in this reign 
as shown in Section 3) encoding on the multimedia stream at 
the application layer and packages and sends the data accord‑
ing to the real-time transport protocol (RTP)/UDP principles. 
Specifically, on a small timescale, the application-layer FEC 
encoder processes each video frame in a fast serial manner 
based on the coding rate, that is, it divides each frame into 
source data packets, performs FEC encoding on these packets 
to generate repair data packets that facilitate the recovery of 
the original video data stream by the receiver. The mobile ter‑
minal serves as the video output and processes the received 
data packets by unpacking them. After obtaining the raw data 
packets with the RTP/UDP headers removed, the terminal-
side decoder performs decoding and error correction accord‑

AL: application layer      FEC: forward error correction
▲Figure 1. Framework of FEC
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ing to the agreed FEC encoding and decoding principles and 
finally obtains the raw video stream through the decoder.

Upon receiving the restored video stream, the mobile termi‑
nal sends real-time feedback on network status information 
(such as packet loss rate and throughput) through a control sig‑
naling port to the adaptive module located at the sender. The 
adaptive module monitoring and prediction unit in the module 
uses the feedback information to determine the encoding rate 
of the FEC encoder on the sender in the next slot. It is worth 
noting that during this process, the adaptive module needs to 
prevent excessive coding redundancy that may cause transmis‑
sion congestion, while ensuring that the FEC encoder gener‑
ates enough repair data packets to support data packet recov‑
ery, without compromising user experience in weak network 
environments. Additionally, the application-layer FEC en‑
coder on the sender should always maintain the same data 
packet generation, validation, and recovery as the application-
layer FEC decoder on the mobile terminal.
3 Frame-Level Partitioning

We divide the video into blocks according to the frames. 
Each block contains one or more frames, and we ensure the 
FEC encoding and decoding are synchronized with the video 
timestamp as much as possible. The sender obtains the video 
frame information by calling the FFmpeg tools and recom‑
bines the frames into blocks. The FEC encoding and decoding 
process at the application layer is based on the entire block. 
Successful decoding can obtain the entire video data of the 
block. In this paper, we set a limit of K frame for the number of 
frames in a block, as excessively long blocks cause additional 
video delays. After the video is divided into blocks, we divide 
the blocks into coding data packets.

For short codes, the upper limit of the block size is 20×
1 400 bytes, where 1 400 setups are based on the maxi‑
mum transmission unit (MTU) and 20 based on the decod‑
ing performance of RS coding (we use RS coding because 
of its superior performance in this region as is shown in 
Section 4.2). Generally, the data sizes of B-frames and P-
frames are small[17]. We take several consecutive B-frames 
or P-frames as a block, if the data size of the block does 
not exceed 28 000 bytes and the number of frames in the 
block does not exceed K frame. The block data carries the en‑
coding method and block size (in bytes). Optionally, we 
can place it in the block header as basic information.

The optimal interval selection [ Nmin, Nmax ] for medium-long 
codes is more flexible. Due to the encoding characteristics of 
the LDPC code, longer code length results in better decoding 
performance. In addition, different code lengths and encoding 
code rates correspond to different LDPC generator matrices, 
where the storage complexity of LDPC generator matrices is 
O (n2 ). For instantaneous decoding refresh (IDR) frames that 
contain a large amount of information, they can be used di‑
rectly as a block. Accordingly, we combine several P-frames 

with a large number of data into a single block, when the num‑
ber of frames is not larger than K frame and the block data size is 
not larger than  Nmax×1 400 bytes. Within the allowable range 
of decoding delay, a longer code length means an enhanced 
ability to cope with continuous packet loss.
4 Hybrid Coding Method

In this section, we first present an improved LDPC that bal‑
ances decoding latency and error correction performance in 
application layer packet loss scenarios. The optimal operating 
regions of RS and LDPC codes are then designed based on the 
performance analysis of the improved LDPC and RS codes. 
The two coding methods are combined to cover the require‑
ments of various code lengths.
4.1 Improved Medium-Long LDPC Codes

As linear block codes, an LDPC or an XOR code is defined 
by its parity-check matrix H of dimensions (n - k ) × n, where 
n represents the number of all packets and k is the source 
packet number. The entries of the parity-check matrix H are 
exclusively 1 or 0, which means that it operates in the Galois 
Field GF(2). The parity-check matrix is so named because it 
provides n - k parity-check equations that generate con‑
straints between data bits and parity bits. Moreover, an LDPC 
code is defined as a linear block code for which the parity-
check matrix H is very sparse, which means a low density 
(LD) of 1.

We construct an LDPC parity-check matrix H using the pro‑
gressive edge growth (PEG) method, where the code length 
and the variable node (Dv) can be adjusted, like the physical 
layer LDPC channel coding. However, unlike before, when  
Dv is even, the decoding result fails irregularly, and the decod‑
ing result has a foreseeable change when Dv is odd, as shown 
in Fig. 2. Because in the binary erasure channel, the erased 
bits may appear to be unevenly distributed, and bits will inter‑
fere with each other when Dv is even. So only odd values of 
Dv can be selected. In addition, Dv represents the protection 
of the source packet in relation to the redundant packet. 
Therefore, LDPC decoding performance increases as Dv in‑
creases. At the same time, the decoding delay as a cost also in‑
creases. As shown in Fig. 3, with the number of Dv increases, 
there is a noticeable decrease within the range of 3–7, fol‑
lowed by a stabilizing trend. When Dv increases to a threshold 
value, the improvement in decoding performance no longer 
changes significantly as Dv increases further, but the latency 
still shows a linear increase (as shown in Fig. 4). Considering 
the delay and error correction performance, the threshold 
value of Dv is chosen to be 7 in the application layer of the 
LDPC scheme.

Then, to generate the code vector c from the data vector s, 
we define the generator matrix G, which holds:

c = sG . (1)
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The main algorithms that create G from H consist in arrang‑
ing H in an appropriate form that allows to develop G and con‑
struct it in a systematic form. Thus, H is randomly generated 
and then organized as:

H = [ PT|In - k ] , (2)
where In - k is the identity matrix of dimensions (n − k) × (n − 
k) and P is a sparse matrix of dimensions k × (n - k ). So, the 
corresponding G matrix is:

G = [ Ik|P ] . (3)
This approach is based on the use of the Gauss-Jordan 

elimination. However, if we transform the right part of H to an 
identity matrix In - k, there is no way to ensure P is a sparse 
matrix. So we define H as the encoding matrix G directly. The 
encoding matrix H of dimensions n × k is different from the 
parity-check matrix H before. We define the encoding vector 
sp as:

sp = Hs . (4)
We generate code vector sp from data vector s. In the sys‑

tem code, sp includes s, which means the source bit/byte and 
the redundancy bit/byte are separated. Whether it is a system 
or non-system code, we can rebuild the coefficient matrix H′ 

▲Figure 2. Packet error rate performs irregularly when Dv is even or 
odd

Dv: variable node

LDPC: low-density parity-check
▲Figure 3. Average receiver redundancy in different values of variable 
nodes

▲ Figure 4. RS and LDPC performance with the number of source 
packets
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to restore the original data by the approach of the Gauss-
Jordan elimination as:

sp' = H's , (5)
where a certain correspondence exists between sp' and H′. sp' 
means the accepted sequence, and H′ means the correspond‑
ing row in H with sp'. Because in the packet erasure channel, 
a lost bit/byte can be located at a specific position.

The decoding end (LDPC uses soft decision at the physical 
layer, while at the application layer, the hard decision is used.
Therefore, we employ the Gaussian elimination method at the 
decoding end) reassembles the received packets, where the 
rows in the coefficient matrix H′ correspond to the sp' code 
bits. If the reassembled matrix is full rank, it satisfies the 
Gaussian elimination decoding requirements:

H′m × k sk = sp′m . (5.1)
The receiver needs to provide feedback to the sender re‑

garding the overall packet loss rate based on the total number 
of packets received. Once decoding is successful, the received 
information packets are arranged in sequence and the video 
data are extracted based on the block header information. 
With the improvement, LDPC can perform even better in the 
binary erasure channel in the application layer.
4.2 Length Bounds for LDPC and RS

For encoders, the coding method directly affects the delay 
and effectiveness of packet loss recovery. We use a hybrid 
coding method of LDPC and RS, and restrict the code lengths 
of LDPC and RS in their own optimal interval to cover all code 
length requirements.

The RS code, as an ideal code, can be successfully decoded 
when receiving several packets equal to the number of infor‑
mation source packets. So, while the sender pays for extra n-k 
redundant packets, the receiver only needs to receive k arbi‑
trary packets to recover the source packet. However, as the 
code length increases, the computational complexity of the RS 
code also increases sharply. In contrast, LDPC is a non-ideal 
code, so it is necessary to receive extra redundancy to ensure 
successful decoding (when the de‑
coding sparse matrix is not full 
rank, the Gaussian elimination 
method cannot be used). How‑
ever, the computational complex‑
ity of LDPC increases linearly 
with the code length. LPDC is 
therefore expected to perform bet‑
ter in the long code region.

Fig. 4 shows the performance 
of RS and LDPC in the decoding 
end under the simulation environ‑
ment. It is shown that RS has bet‑

ter performance in short codes, but as the code length in‑
creases, the delay of RS cannot meet requirements. Therefore, 
we choose to use LDPC instead of RS. LDPC operates in the 
binary field GF(2) different from RS in GF(2^8). It causes 
LDPC as an upper-layer coding method to have a lower decod‑
ing delay but also requires considering the additional redun‑
dancy at the receiving end of LDPC. Fig. 4 shows as the code 
length increases, LDPC has a high receiver redundancy in 20 
source packets and it gradually becomes lower and closer to 
the ideal code performance, so we decide to use RS coding for 
code lengths not greater than 20 and LDPC coding for other 
situations. Besides, we set the upper limit of  Nmax comprehen‑
sive weight decoding delay and receiver redundancy to meet 
video transmission needs (the upper limit is relatively flexible 
due to LDPC characteristics, but we give an upper limit ac‑
cording to practical needs as shown in Section 4.1).

In Section 3, we limit the selection of RS and LDPC code 
lengths to certain intervals. However, these intervals are cho‑
sen to optimize the performance of RS and LDPC encoding 
and decoding within those specific code length ranges. It does 
not mean that we are restricted to only those code lengths.
5 Code Rate Adaptation Algorithm

FEC encoding redundancy allocation is mainly based on 
the estimated packet loss rate of the channel. Therefore, we es‑
tablish a packet loss rate prediction module based on a multi-
step Kalman filter system which is shown in Fig. 5. By calcu‑
lating the linear minimum mean square error of the data and it‑
eratively predicting results, we can obtain the next predicted 
value. The prediction process of this algorithm involves using 
the optimal result predicted at time k - 1 and the measure‑
ment value at time k to calculate and update the optimal result 
of the state prediction at time k, and then continue iterating to 
obtain the predicted value of the next time.

First, we determine the state space equation used to esti‑
mate the packet loss rate of the channel. The state prediction 
equation is ck = Ack - 1 +  Buk + wk, where A is the state transi‑
tion matrix, ck - 1 is the previous prediction value, B is the in‑
put gain matrix uk system input vector, wk has a mean of 0, co‑
variance matrix Q = E [ wk2 ], and follows a normal distribution 

▲Figure 5. Packet loss ratio predictor by using a Kalman filter

Packet lossfeedback Kalman gain

Modelprediction

MeasurementcorrectionKg (k)
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process noise. The state measurement equation is zk = ck + vk, where vk has a mean of 0, covariance matrix R = E [ vk2 ], and 
follows a normal distribution measurement noise.

The single-step adaptive algorithm consists of two pro‑
cesses, namely prediction and correction. In the prediction 
phase, the filter uses the estimated packet loss rate of the pre‑
vious state to predict the current state. In the correction 
phase, the filter uses the measurement value of the current 
state to correct the predicted value obtained in the prediction 
phase, i. e., the feedback value of the packet loss rate, to ob‑
tain a new estimate value that is closer to the true value. This 
new estimate value is the Kalman estimate value, which is 
used as the estimate of the previous state for the next Kalman 
estimate. Since the uncertainty of process noise and measure‑
ment noise cannot be modeled, the Kalman filter is used to 
continuously correct the estimation model to minimize the 
mean square error between the true value and the estimated 
value. The main steps are as follows:

Step1: Kg (k) = P ( )k - 1 + W
P ( )k - 1 + W + Q

 , (6)
Step2: ĉ (k) = ĉ (k | k - 1) + Kg (k)[ z (k) - ĉ (k | k - 1) ] , (7)
Step3: P (k) = (1 - Kg (k) ) (P (k - 1) + W ) , (8)

where P (k) = E [ ( ĉ (k) - c (k ) ) 2 ] is the error variance of the 
model. Through the Kalman filter, we obtain a packet loss rate 
ck at a certain time scale.

To obtain the multi-step packet loss rate prediction value, 
the average packet loss rate of five blocks in the future is pre‑
dicted at each step. Since the average packet loss rate mea‑
surement z (k + 1)，z (k + 2)，z (k + 3)，z (k + 4)，z (k + 5) is 
still unknown when encoding block z (k ) of the next blocks 
meets z (k + 1) =  z (k + 2) = z (k + 3) = z (k + 4) = z (k +
5) = z (k).

As an important parameter for adaptive redundancy calcula‑
tion, the packet loss is accompanied by another important pa‑
rameter, which is the redundancy at the receiving end. Given 
that the RS code is ideal, decoding can be successfully 
achieved by receiving any k packets. However, the long-code 
LDPC method is not an ideal one, and the scheme needs to es‑
tablish the cost of receiving redundancy at the receiver, which 
describes the mapping relationship between the number of ad‑
ditional packets required by the receiver and the retransmis‑
sion rate due to decoding failures.

We establish a receiver redundancy cost function, and the 
selected code rate is influenced by the receiver redundancy 
cost. The goal is to minimize the overall transmission cost as 
much as possible. The receiver redundancy cost of the target 
video can be characterized by the receiver redundancy cost 
function:

C = [ Q (k,r - m) - δ∙P rtt(k,r - m) ]2 , (9)

where C represents the receiver redundancy cost of the t-th 
block, i.e., the total cost of transmitting block t at the current 
code rate. Q (k, k + r - m) represents the code rate with the 
source information bit length of k and the redundancy bit 
length of r (since the medium-long code is not in the form of a 
system code, r can be expressed as n - k, where n is the total 
information bit length after encoding), and m represents the 
number of lost packets. The code rate can be expressed as 
k/ (k + r ) and the packet loss rate can be expressed as m/ (k +
r ). k + r - m represents the number of packets received, and 
Q (k, r - m ) represents the function related to k and 
k + r - m. Optionally, Q (k, r - m) = ( r - m ) /k can be di‑
rectly expressed as the redundancy ratio of the receiver, where 
P rtt (k, r - m ) represents the decoding failure rate under the 
current receiver redundancy ratio which is the ratio of the 
overall decoding errors of the block in the simulation process. 
Decoding failure requires retransmission of the block, and δ 
represents the weight of the decoding failure item. An increas‑
ing value of δ indicates that we consider the current decoding 
failure rate to be unacceptable.

By reversely solving the redundancy cost function problem, 
we can obtain the proportion of additional packets that the re‑
ceiver needs to receive, rrec, when the expected retransmission 
probability is not greater than a probability P using LDPC en‑
coding. Then, by estimating the packet loss rate below, we can 
obtain the encoding redundancy:

r = é

ë

ê
êê
ê ù

û

ú
úú
ú(k + k

rrec ) /c - k , (10)
where c is the current packet loss estimate and k is the length 
of the information source code.
6 Evaluation

6.1 Setup
1) Datasets: This paper considers a transmission channel 

based on the Gilbert-Elliott model[18], which is acknowledged 
as a common simulation environment of network packet deliv‑
ery. The Gilbert-Elliott model is a Markov process, where B 
and G indicate the bad and good network state. The probabil‑
ity of transitioning from state B to G is denoted as PBG, and the 
probability of transitioning from state G to B is denoted as PGB. 
The transition matrix of the Markov chain is as follows:

A = ( )1 - PGB PGB
PGB 1 - PGB  . (11)

In a stable state, πG is the probability of being in a good 
state and πB a bad state.

πG = PGB
PGB + PGB  ,
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πB = PGB
PGB + PGB  . (12)

The formula for calculating the probability of packet loss is：
PE = πG(1 - k) + πB(1 - h) , (13)

where k represents the probability of successful reception in 
a good state, and h represents the probability of packet loss 
in a bad state. Therefore, PE is decided by setting the value 
of four parameters. Table 1 shows four parameter values for 
network packets loss ratio range of 5%–20%, 20%–40%, 
and 40%–80%.

2) The high-bitrate 4K/30fps video is performed frame-level 
cutting by FFMPEG. We sample the generalized GE channel 
with different packet loss rates based on the total number of 
blocks. Then, the proposed scheme is compared with the We‑
bRTC FEC algorithm in the GE channel:

• WebRTC-FEC based on the XOR algorithm employs a 
redundancy protection scheme. When the original packet 
size is less than or equal to 12, the redundancy level is di‑
rectly obtained from a lookup table and the packet is en‑
coded. When the original packet size is greater than 12, an 
interval-based grouping redundancy encoding method is 
used. The adaptive solution of WebRTC predicts the network 
status based on the video bitrate and the packet loss rate of 
video transmission. The redundancy level is obtained from a 
lookup table based on the video bitrate and packet loss rate, 
and is combined with the network status prediction that in‑
creases the RTT of transmission.

• The proposed AH-FEC is a long and short code adaptive 
redundancy coding algorithm based on RS and LDPC codes. It 
selects the coding redundancy degree based on the decoding 
redundancy at the receiver and the packet loss rate of the 
channel, balancing system latency and redundancy. At the en‑
coding end, the future packet loss rates of multiple video 
blocks are predicted based on the packet loss rate of past 
video blocks for a certain period. Then, the encoding redun‑
dancy is dynamically adjusted accordingly.

3) Metric: In performance comparison, we consider the fol‑
lowing measurement metrics.

• Data recovery ratio. The percentage of data blocks that 
are successfully recovered is the proportion of all data blocks.

• Redundancy ratio. The redundancy ratio is the proportion 
of encoded extra packets relative to packets, and it is ex‑
pressed as n - k

k .

6.2 Experiments on Simulation
Simulation traces contain 300 sample frames, and the re‑

dundancy strategy in WebRTC treats each frame as a block di‑
rectly. We reorganize it according to the frame partition 
method and evaluate the results of the two FEC schemes.

Fig. 6 presents the recovery ratio and redundancy ratio of 
the two algorithms under network packet loss rates of 5%–
20%, 20%–40%, and 40%–80%. As evidenced by Fig. 6, 
the recovery success rates of both the proposed scheme and 
the WebRTC scheme approach 100% at packet loss rates of 
5% to 20%, while the proposed scheme only requires about 
32% redundancy. This lower redundancy requirement is at‑
tributed to the proposed scheme using RS-LDPC hybrid cod‑
ing, which proves more efficient than the XOR coding em‑
ployed by WebRTC, thereby requiring less redundancy to of‑
fer comparable protection capability. In addition, the adaptive 
capability of Kalman filtering is also superior to the fixed re‑
dundancy table of WebRTC, so the redundancy rate is greatly 
compressed. When the redundancy rate ranges between 20% 
and 40%, the WebRTC redundancy reaches its peak in the re‑
dundancy table at 100%. At this stage, a substantial reduction 
in the data recovery rate is observed due to WebRTC’s lim‑

▼Table 1. Parameter values for different packets loss ratio ranges
Parameter

Value

PGB ( p )
0.130
0.360
0.900

PBG ( r )
0.910
0.840
0.600

k

0.970
0.980
0.980

h

0.030
0.050
0.020

PE

0.114
0.299
0.596

Range
(0.050, 0.200)
(0.200, 0.400)
(0.400, 0.800) ▲Figure 6. Data recovery and redundancy ratio in different packet loss ratios
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ited capability. In contrast, the proposed solution outperforms 
WebRTC in terms of both recovery and redundancy rates. Fi‑
nally, the proposed solution works stably even at packet loss 
rates of 40% to 80%, when the redundancy rate reaches over 
180% and the recovery rate reaches over 93%. In contrast, the 
redundancy of WebRTC is limited by an offline table so the 
FEC cannot work.

To illustrate the specific results in Fig. 6, we present the 
specific results of data recovery ratio and redundancy ratio in 
Table 2.

In summary, the proposed scheme presents the following ad‑
vantages over the current FEC techniques (RFC5109) imple‑
mented in WebRTC:

• For network packet loss rates of 5%–20%, the retrans‑
mission rate is kept at a relatively low level, achieving a 
65.65% reduction in the redundancy ratio of the sent data.

• For network packet loss rates of 20%–40%, in compari‑
son to WebRTC, this approach improves the data recovery ra‑
tio by 2.21% and decreases redundant data by 22.06%.

• For network packet loss rates of 40%–80%, the redun‑
dancy ratio increases by 82.56%, achieving a tremendous re‑
duction in the retransmission rate.

These results suggest that the redundancy strategy em‑
ployed by WebRTC lacks adaptability and depends heavily on 
retransmission, making it unsuitable for high-bitrate videos. 
Conversely, the proposed AH-FEC succeeds in reducing both 
redundancy and retransmission rates under identical condi‑
tions, demonstrating adaptability to complex channel loss sce‑
narios, especially in weak network environments with high 
packet loss rates.
7 Conclusions

The FEC scheme employed in WebRTC is unsuitable for 
high-bitrate video due to limitations in coding efficiency and 
adaptive capacity. Therefore, we develop a hybrid coding 
method based on RS/LDPC codes, which determines the cod‑

ing redundancy according to the receiver redundancy and 
packet loss rate. When contrasted with the group XOR method 
in WebRTC, the proposed scheme significantly reduces send‑
ing redundancy while ensuring low delay and high recovery 
rate. We also implement a redundancy decision algorithm 
based on multi-step packet loss rate prediction, which gener‑
ates forward-looking redundancy decisions based on feedback 
from the packet loss rate of the receiver. In comparison to the 
static table lookup method in WebRTC, this approach can 
adapt to complex and dynamic packet loss environments. The 
proposed AH-FEC consistently maintains a high data recovery 
ratio with the interval change of packet loss rates.
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Abstract: Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages 
such as high fabrication accuracy, true 3D processing flexibility, and no need for mold or photomask. In this paper, we demonstrate the design 
and fabrication of a planar lightwave circuit (PLC) power splitter encoded with waveguide Bragg gratings (WBG) using a femtosecond laser in‑
scription technique for passive optical network (PON) fault localization application. Both the reflected wavelengths and intervals of WBGs can 
be conveniently tuned. In the experiment, we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of 
about 4 nm and an adjustable reflectivity of up to 70% in the C-band. The proposed method is suitable for the prototyping of a PLC splitter en‑
coded with WBG for PON fault localization applications.
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1 Introduction

Fiber-to-the-x (FTTX) technology has made rapid prog‑
ress in recent decades thanks to the adoption of pas‑
sive optical network (PON) technology. This technology 
can effectively reduce the number of fiber channels 

and eliminate the need for power supply to transmission de‑
vices, resulting in low-cost and high-performance solutions.

In a PON system, the network structure is complex, with a 
large number of users scattered across various locations. More 
than one-third of network failures are caused by fiber dam‑
age[1], which is difficult to locate and repair. As a result, real-
time fault localization in the PON system is an important issue 
that directly impacts the quality of network service and the 
cost of network maintenance.

Several technologies have been developed for failure detec‑
tion and localization[2–3]. Among them, optical time-domain re‑
flectometry (OTDR) is the most widely used one due to its ver‑
satility and convenience. OTDR characterizes fibers using 
power traces of fiber-backscattered signals, which can be used 

to extract information and localization related to network fail‑
ures[4]. However, it is difficult to directly detect failures using 
OTDR in a point-to-multiple-point topological network due to 
the superposition of the backward signals. Researchers have 
improved the conventional OTDR method to distinguish differ‑
ent branches in PON by installing film-type filters as reflec‑
tors on optical network units (ONU) and comparing the mea‑
sured signals with a standard signal[5]. However, this method 
will inevitably increase the complexity of both the operation 
and maintenance of ONUs located at the end-user side, which 
are inconvenient to access and are the most devices in the 
whole system.

As a result, realizing fault localization before reaching the 
ONUs is desirable. Fiber Bragg grating (FBG) encoded planar 
lightwave circuit (PLC) splitters have been proposed to over‑
come this problem[6–7]. Periodic coding schemes have been 
proposed[8–9], which use a pair of FBGs with different reflec‑
tance connected by a piece of fiber to generate the periodic 
codes. A centralized PON fault localization scheme based on 
optical coding has also been proposed[10], deploying an optical 
encoder containing a series of FBGs of different wavelengths 
in front of the user. This scheme achieved a small correlation This work was supported by the ZTE Industry-University-Institute Fund 

Project under Grant No. IA20221202011.

20240605.1755.002
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distance and a low multiple-customer interference probability. 
Another FBG-based OTDR scheme involves probing the sig‑
nal of a tunable OTDR reflected by the FBGs placed in front 
of the customers. However, the disadvantages of using FBG-
based OTDR solutions for PON fault localization are obvious 
because the fabrication process for FBG arrays or ribboned 
FBGs is complicated and not suitable for mass production, 
which implies difficulty in cost reduction. Moreover, the poor 
correlation characteristic of FBG-based OTDR solutions in‑
creases the difficulty of the recognition process[11].

Recently, a remote coding scheme for PON fault localiza‑
tion using waveguide Bragg gratings (WBGs) in power splitters 
fabricated by PLC technology has been proposed[11]. Multiple 
cascaded gratings written on the branches of different stages 
of a PLC-based splitter can be used to generate the corre‑
sponding optical codes. Fig. 1 shows how the PLC chips inte‑
grated with WBGs realize the remote coding for the PON fault 
localization system. The first stage splitters reflect four differ‑
ent wavelengths of λ1, λ2, λ3, and λ4, and the second stage 
splitters reflect four wavelengths of λ5, λ6, λ7, and λ8, result‑
ing in 16 different combinations such as λ1λ7 and λ3λ8 to de‑
termine the optical path where the ONU is located. The key 
advantage of using WBGs encoded power splitters for PON 
fault localization is their potential for mass production at the 
wafer level. This is the most effective way to cut cost, which is 
the most critical point for PON applications. There are other 
advantages such as easy installation and maintenance, com‑
pact size, and no need for additional devices or components. 
However, the fabrication of complex Bragg gratings on chip-
level or even wafer-level PLC devices using conventional UV 
exposure assisted with hydrogen loading technique is difficult, 
high-cost, and time-consuming for prototype device fabrica‑
tion and system-level validation tests.

In this paper, we propose a femtosecond laser direct inscrip‑

tion technique for the fabrication of prototype PLC splitters en‑
coded with WBGs for passive optical network fault localiza‑
tion applications. Reflected wavelengths, their intervals of 
WBGs, and reflectance can be conveniently tuned by adjust‑
ing parameters such as period, length, and refractive index 
modulation of the WBGs. In the experiment, we succeeded in 
directly inscribing WBGs in the 1×4 PLC splitter chips with a 
wavelength interval of about 4 nm and an adjustable reflec‑
tance of up to 70% in the C-band. The proposed method is 
suitable for prototyping PLC splitters encoded with WBGs for 
PON fault localization applications.
2 Fabrication and Evaluation

We utilized customized single-channel PLC waveguide 
chips and 4-channel PLC chips with splitter structures for our 
experiments. The dimensions of four-channel PLC chips are 
about 30 mm in length, 3 mm in width, and 2.5 mm in height. 
There is a comparatively long straight PLC waveguide after 
the splitter structure and a partly removed cover glass, for 
waveguide Bragg grating inscription purposes.

The schematic of the femtosecond laser process system and 
its picture for WBG inscription in PLC chips are shown in 
Figs. 2 and 3, respectively. The femtosecond laser operates at 
a wavelength of 515 nm with a pulse duration of 350 fs and a 
repeating rate of 25 kHz. During inscription, the laser moves 
at a speed of 50 μm/s. The incident femtosecond laser light is 
reflected by a total reflection mirror and focused into the cen‑
ter of the waveguide structure of the PLC chip through a 50× 
objective lens. By optimizing the moving speed, pattern and 
distance of the displacement stage, laser light can scan over 
the waveguide and inscribe desirable Bragg gratings on the 
waveguide in PLC chips.

The pitch Λ of WBG can be represented by λB = 2neff Λ, 
where λB is the Bragg wavelength and neff is the effective re‑
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▲Figure 1. Passive optical network (PON) fault localization using PLC splitter encoded with WBG
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fractive index of the waveguide in the PLC splitter. In our 
case, the periods of the waveguide Bragg gratings inscribed on 
channels 1, 2, 3, and 4 are 1.609 μm, 1.605 μm, 1.601 μm 
and 1.597 μm, respectively. The length of the inscribed grat‑
ing is 3 000 periods, which is approximately 4 800 μm. Dur‑
ing the inscription process, the transmitted spectra of the 
waveguide could be observed in real time to optimize the in‑
scription parameters.

By optimizing both displacement and aberration correction, 
we successfully fabricated single-channel WBG and 4-chan‑
nel WBG in PLC splitters, respectively, with different re‑
flected wavelengths and differently designed reflectance.

The measurement setup for transmitted and reflected spectra 
is shown in Fig. 4. The transmitted and reflected spectra can be 
obtained from port 2 and port 3, respectively. The measured 
transmitted and reflected spectrum of the single-channel WBG 
is shown in Figs. 5 and 6. The reflected wavelength of WBG is 

1 545.1 nm with a reflectance of about 70%, and its 3 dB band‑
width is about 0.3 nm. The main parameters and their transmit‑
ted spectra of the four-channel PLC splitter are shown in Table 
1 and Fig. 7. The reflected wavelengths of the four channels are 
intended to be 1 552 nm, 1 548 nm, 1 544 nm, and 1 540 nm 
respectively, with a negligible wavelength shift up to 0.5 nm. 
The reflectivity of Channels 1 and 2 is about 30%, while that of 
Channels 3 and 4 is about 40%. Their 3 dB bandwidths are 
varying from 0.5 nm to 0.9 nm. The reflected wavelength of the 

CCD: charge coupled deviceFS: femtosecond laserHWP: half wave plate
NA: numerical aperturePC: personal computer

▲ Figure 2. Femtosecond laser process system for waveguide Bragg 
grating (WBG) inscription in planar lightwave circuit (PLC) chips

▲Figure 3. Picture of femtosecond laser process system

ASE: amplified spontaneous emission     OSA: optical spectrum analyzer
▲ Figure 4. Measurement setup for transmitted and reflected optical 
spectra

▲ Figure 5. Measured transmitted spectrum of single-channel wave⁃
guide Bragg grating (WBG)

▲ Figure 6. Measured reflected spectrum of single-channel waveguide 
Bragg grating (WBG)
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single-channel PLC waveguide remains the same at 1 545.1 
nm and the measured fluctuation in reflectance is within 0.2 
dB under different polarization states, which implies that 
WBG is not sensitive to polarization. Pictures of the fabricated 
prototype PLC splitter encoded with WBG are shown in Fig. 8. 
A microscope graph of WBG structure is also shown in the in‑
set of Fig. 8(b).
3 Conclusions

We implement a femtosecond laser direct inscription tech‑
nique to fabricate prototype PLC splitters integrated with 
WBGs for PON fault localization application. By manipulating 

parameters such as the period, length, and refractive index 
modulation of the WBGs, we can effectively control the re‑
flected wavelengths and their intervals. Our experimental re‑
sults demonstrate the capability to directly inscribe WBGs 
into PLC splitter chips, achieving a wavelength interval of ap‑
proximately 4 nm and a reflectance of up to 70% in the C-
band. This method is suitable for prototyping PLC splitters en‑
coded with WBGs for PON fault localization.
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▲ Figure 7. Measured transmitted spectra of 4-channel waveguide 
Bragg grating (WBG) splitter

▲ Figure 8. Fabricated prototype waveguide Bragg grating (WBG) in 
planar lightwave circuit (PLC) chip: (a) side-view; (b) top-view
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Abstract: Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries, eliminating inter-
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this paper, we investigate multiple reconfigurable intelligent surfaces (RISs) aided cell-free systems where RISs are introduced to improve 
spectrum efficiency in an energy-efficient way. To overcome the centralized high complexity and avoid frequent information exchanges, a co‑
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1 Introduction

To satisfy the ever-increasing demands for massively-
connected, high-throughput, and energy-efficient com‑
munications, several promising technologies have 
emerged and been discussed in 5G communication 

standards, including massive multiple-input multiple-output 
(MIMO)[1], millimeter-wave communications[2], and ultra-dense 
networks (UDNs) [3]. Among them, massive MIMO and UDN 
both aim at increasing the number of antennas or the deploy‑
ment of small base stations (BSs) in a cell-centric way to 
achieve high capacity. However, the performance of multi-cell 
MIMO architecture suffers from inter-cell interference with 
the concept of cell boundaries[4]. To address this problem, a 
new architecture named the cell-free network has been pro‑
posed in a user-centric paradigm, where all access points 
(APs) in the network coordinate with each other to serve all us‑
ers in the network simultaneously[5–6]. By deploying a mass of 
low-cost APs across the network and through effective coop‑
eration among APs, cell-free networks achieve high-capacity 
coverage and diversity enhancement. However, when it comes 
to further capacity improvement, both hardware and power 
consumption require high costs, which cannot be ignored for 

next-generation communications.
Fortunately, reconfigurable intelligent surface (RIS) 

emerges as a key candidate technology for future 6G wireless 
systems[7–8]. Different from the traditional ways of antennas or 
BS densification, RIS, which comprises numerous low-cost 
passive reflecting elements, provides an energy-efficient alter‑
native to improve the system spectrum efficiency by adjusting 
the phase shifts of its elements smartly, while being free from 
radio frequency chains and amplifiers. With the ability to ma‑
nipulate the incident electromagnetic signals, RIS can be used 
to improve the channel rank[9], extend the coverage area[10], en‑
hance the desired signals at the users, and constructively miti‑
gate the undesired signals at unintended users. By introducing 
RIS into the cell-free network, higher spectrum and energy ef‑
ficiency can be achieved with less power consumption[11–12].

Several research works have been devoted to jointly optimiz‑
ing the transmit beamforming at the AP and the phase shifts at 
the RIS to guarantee the performance gain, including single-
cell[13–14] and multi-cell[10] scenes. Additionally, in Ref. [15], 
the authors first added an ariel RIS to a cell-free system and 
proposed an iterative optimization algorithm to maximize the 
achievable rate of the user by the power allocation and the 
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beamforming vector. In Ref. [16], the channel estimate 
scheme was investigated for RIS-assisted cell-free systems un‑
der spatially correlated channels. While the above works only 
considered the system with a single RIS, authors in Ref. [11] 
studied the sum-rate optimizing problem with multiple RISs in 
a centralized beamforming scheme. However, with the in‑
crease of the network scale, it is very intractable to collect all 
the instantaneous channel state information (CSI) and com‑
pute the high-dimensional information. Later, in Ref. [17], a 
fully decentralized design framework was proposed to incre‑
mentally and locally update the beamformers. However, in the 
presence of RISs, multiple iterations are required to reach a 
consensus for the phase shift design due to the coupling effect 
of the active beamformer and phase shift design. Despite re‑
ducing the complexity, it increases signaling exchange among 
APs and the processor cost for APs, introducing more poten‑
tial delay and errors for CSI.

Inspired by Ref. [18], we propose a distributed framework 
for cooperative beamforming and phase shift design in RISs-
aided cell-free systems. In order to avoid the drawbacks of 
centralized high-dimensional CSI exchange and high CPU 
processing complexity, as well as the issues of frequent CSI 
exchange and latency time among fully distributed APs, we 
leverage the centralized processing capability of the CPU to 
optimize the high-dimensional phase shifts brought by mul‑
tiple RISs to improve system capacity, while each AP only lo‑
cally optimizes the small-scale active beamforming. The 
main contributions of this work are summarized as follows. 1) 
A cooperative distributed beamforming design framework is 
proposed for the multi-RIS aided cell-free system, showing 
lower complexity and comparable spectrum efficiency to the 
centralized framework in Ref. [11]. 2) A weighted sum-rate 
(WSR) maximization problem for the cooperative distributed 
scheme is formulated, subject to transmit power constraints 
at APs and unit-modulus constraints of RIS. By employing 
the alternating optimization framework to decompose the non‑
convex problem, we innovatively derive a closed-form distrib‑
uted solution to active beamforming, while the effective Ri‑
emannian conjugate gradient (RCG) algorithm is adopted to 
deal with the phase shifts of multiple RISs under unit-
modulus constraints, and the discrete phase-shift case is ad‑
ditionally discussed. 3) Simulation results demonstrate the 
superior performance of the multi-RIS aided cell-free system 
compared with the traditional cellular network and the con‑
ventional cell-free system, and verify the effectiveness of the 
proposed low-complexity design.

The rest of this paper is organized as follows. Section 2 pres‑
ents the system model and the formulation of the discussed 
problem. Section 3 introduces the proposed cooperative dis‑
tributed beamforming design. Section 4 provides the numeri‑
cal results to discuss the performance of the proposed design. 
Finally, we conclude this paper in Section 5.

2 System Model and Problem Formulation
In this paper, we consider a downlink RISs-aided cell-free 

system, where multiple distributed APs (each equipped with 
Mt transmit antennas) cooperatively serve K users (each 
equipped with Mr receive antennas) with the aid of multiple 
RISs. All RISs are controlled by the CPU through wired or 
wireless control, while all APs are connected to the CPU by 
the backhaul link. The CPU is deployed for joint planning and 
control, which coordinates APs and RISs. We denote the in‑
dex sets of APs, RISs, users and RIS reflecting elements as 
B = {1,⋯,B}, L = {1,⋯,L}, K = {1,⋯,K} and N = {1,⋯,N}, 
respectively.
2.1 Transmitters

In the proposed cell-free network, all APs cooperate to 
serve all users by coherent transmission. Let sk,∀k ∈ K denote 
the transmitted symbol for the k-th user, satisfying E{| sk |

2} =
1. Then, the transmitted signal at the b-th AP is given as

xb = ∑
k = 1

K

wb,k sk ,∀b ∈ B, (1)
where wb,k ∈ CMt × 1 denotes the corresponding active beam‑
forming vector designed for the k-th user at the b-th AP. The 
beamforming vectors satisfy the transmit power constraint ∑k = 1

K  wb,k
2 ≤ Pb, max, where Pb, max denotes the power budget 

of the AP b.
2.2 Channel Model

Let H H
b,k ∈ CMr × Mt, H H

r,l,k ∈ CMr × N and Gb,l ∈ CN × Mt denote 
the complex equivalent baseband channel matrix between the 
b-th AP and the k-th user, between the l-th RIS and the k-th 
user, and between the b-th AP and the l-th RIS, respectively, 
∀b ∈ B, ∀k ∈ K, and ∀l ∈ L. We assume that the CSI of all 
the links can be perfectly known at the AP via the channel ac‑
quisition method[19]. Denote the phase shift of the n-th reflec‑
tion element of the l-th RIS by θl

n ∈ [0, 2π]. Then, by defining 
Φ l ≜ diag{ϕl,1,⋯,ϕl,N},∀l ∈ L, where ϕl,n = ejθl

n, the received 
signal at the k-th UE can be expressed and simplified as:

yk = ∑
b = 1

B ∑
m = 1

K ( )H H
b,k + ∑

l = 1

L

H Hr,l,k Φ l Gb,l wb,m sm + nk   =(a )

∑
b = 1

B ∑
m = 1

K ( )H H
b,k + H Hr,kΦ Gb wb,m sm + nk =(b)

∑
b = 1

B ∑
m = 1

K

H̄ H
b,k wb,m sm + nk, (2)

where (a ) holds by defining Φ = diag (Φ1,⋯,ΦL )，H r,k =
[ H Tr,1,k,⋯,H Tr,L,k ]

T, and Gb = [G T
b,l,⋯,G T

b,L ]
T, and (b) holds by 

defining
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H̄ H
b,k = H H

b,k + ∑
l = 1

L

H Hr,l,kΦ lGb,l , (3)
and nk ∼ CN (0,σ2 IMr ) denotes the noise at the k-th user fol‑
lowing the Gaussian distribution. Then, the achievable data 
rate of user k can be given by:

Rk = log det ( I + (∑b = 1

B

H̄ H
b,k wb,k) (∑b = 1

B

wH
b,k H̄b,k)Q-1

k ) , (4)

where Qk = ∑
m = 1,m ≠ k

K ( )∑
k = 1

B

H̄ H
b,k wb,m (∑k = 1

B

wH
b,m H̄b,k) + σ2 IMr

 .

2.3 Problem Formulation
In this paper, we aim at maximizing the WSR of the RISs-

aided cell-free system by jointly optimizing the AP transmit 
beamforming W and phase shift matrix Φ, with the WSR writ‑
ten as

Rsum = ∑
k = 1

K

ωk Rk , (5)
where ωk ∈ R+ is a weighting factor representing the priority 
for user k.

Then, subject to the AP transmit power constraint and the 
unit-modulus constraints of RIS elements, the optimization 
problem can be expressed as

max
W,Φ     Rsum

        s.t.     ∑
k = 1

K

 wb,k
2 ≤ Pb, max,∀b ∈ B,

                       θl
n ∈ F, ∀l ∈ L, ∀n ∈ N, (6)

where W ≜ [w1,⋯,wK ] ∈ CBMt × K, and wk = [wT1,k,…,wT
B,k ]

T. 
Here, we assume F ≜ { |θl

n | ejθl
n | = 1},∀l ∈ L,∀n ∈ N, and we 

will also discuss the design under the discrete phase shift con‑
straints as follows. Apparently, due to the non-convex complex 
objective function and the unit-modulus constraint in Problem 
(6), the optimization of the phase shift matrix Φ and the active 
beamforming matrix W is very challenging.
3 Proposed Cooperative Distributed Beam⁃

forming Design
To avoid the centralized overwhelming computation, we pro‑

pose a cooperative distributed beamforming design for solving 
Problem (6), since the constraints are distributed. Meanwhile, 
due to the large dimension of variables and the coupling effect 
of active beamformer and phase shift design, the full distrib‑
uted framework will lead to extensive CSI exchange among 
APs and even more to reach a consensus on the phase shift de‑
sign. Therefore, in the proposed design, we take full advantage 
of the centralized processing of the CPU to optimize the high-
dimensional Φ, while the active beamformers are computed lo‑
cally by each AP, in a cooperative distributed way.

In the following, the alternating optimization approach is ad‑
opted to address the joint optimization problem, which is de‑
composed into the active beamforming and the phase optimiza‑
tion subproblems.
3.1 Reformulation of the Original Problem

By exploiting the equivalence of the sum-rate maximization 
problem and the weighted mean-square error (MSE) minimiza‑
tion problem[20], the original non-convex problem can be refor‑
mulated into a more tractable form. First, considering a linear 
receiver filter uk ∈ CMr × 1, the estimated signal vector of each 
user is given by ŝk = uH

k yk,∀k ∈ K. Then, under the indepen‑
dence assumption of the signal and the noise, the MSE matrix 
can be written as

msek ≜ Es,n
é
ë

ù
û( )ŝk - sk ( )ŝk - sk

H =

( )uH
k ∑

b = 1

B

H̄ H
b,k wb,k - 1 ( )uH

k ∑
b = 1

B

H̄ H
b,k wb,k - 1

H

+

   uH
k ( )∑

m = 1,m ≠ k

K ( )∑
b = 1

B

H̄ H
b,k wb,m ( )∑

b = 1

B

wH
b,m H̄b,k + σ2

k IMr
uk,∀k ∈ K. (7)

By introducing a set of auxiliary matrices f = { fk,∀k}, Prob‑
lem (6) can be reformulated as follows[20]:

max
W,u,f,Φ   ∑

k = 1

K

ωk( )log ( )fk - fkmsek + 1  , 
         s.t.       ∑

k = 1

K

 wb,k
2 ≤ Pb, max, ∀b ∈ B ,

                            θl
n ∈ F, ∀l ∈ L, ∀n ∈ N. (8)

AP： access pointsRIS: reconfigurable intelligent surface UE: user equipment

▲Figure 1. Downlink transmission in the multi-RIS aided cell-free system

UE K
UE k…

RISs

… CPU

APAPRIS controller RIS controller
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3.2 Optimizing Active Beamforming
Fixing all of the auxiliary matrices u, f and the phase shift 

matrix of RISs Φ, we can rewrite the active beamforming opti‑
mization problem as:

min
W

   ∑
k = 1

K

ωk fkmsek  
      s.t.    ∑

k = 1

K

 wb,k
2 ≤ Pb, max,∀b ∈ B. (9)

By substituting msek in Eq. (7) into the objective function in 
Problem (9) and ignoring the unrelated constant terms, we sim‑
plify the above optimization problem as

min
W

  Tr (W HVW ) - 2ℜe{Tr (QHW )}  
      s.t.     ∑

k = 1

K

 wb,k
2 ≤ Pb, max,∀b ∈ B, (10)

where

V ≜ ( )V1,1 ⋯ V1,B⋮ ⋱ ⋮
VB,1 ⋯ VB,B

,
(11)

Vbb′ ≜ ∑k = 1
K ωk fk H̄b,kuku

H
k H̄ H

b′,k, (12)

Q ≜ [ q1,⋯,qK ] , (13)

qk ≜ [ qT1,k,qT2,k,…,qT
B,k ]

T, (14)

qb,k ≜ ωk fk H̄b,kuk, (15)
and ℜe{ ⋅ } denotes the real part of its argument. We can ob‑
serve that Problem (10) is a standard quadratically con‑
strained quadratic program (QCQP) problem, which can be op‑
timally solved by many existing methods such as the alternat‑
ing direction method of multipliers (ADMM) and the standard 
convex tools[11]. However, these centralized methods contrib‑
ute to high computational complexity. Here, with the power 
budget constraint, we provide a closed-form distributed solu‑
tion by introducing the Lagrange multipliers method. Accord‑
ing to the first-order optimal condition for each AP b and each 
user k, we can obtain

wopt
b,k = (Vbb + λb IM t )-1 (qb,k - ξb,k ), (16)

where λb is the introduced Lagrange multiplier updated via 
the bisection method. ξb,k ≜ ∑b′ ∈ B\ { b }Vbb′wb′,k, which implies 
the information about the channel between AP b and the other 

APs, and about the beamforming designs adopted by the other 
APs for user k. Moreover, in the distributed design, each AP 
locally computes its beamformer wb,k in parallel with the other 
APs. So based on the fixed ξb,k, each AP updates its beam‑
former vector at iteration t as

w ( t )
b,k = (1 - α )w ( t - 1)

b,k + αwopt
b,k , (17)

where α ∈ ](0,1 . The update in Eq. (17) is to limit the varia‑
tion of the precoding vectors between consecutive iterations, 
where the step size α needs to be chosen properly to strike a 
balance between convergence speed and accuracy.
3.3 Optimizing Auxiliary Variables

For given active beamforming matrices {wb,k,∀b,∀k} and Φ, 
the optimization problem can be expressed as

max
u,f   ∑

k = 1

K

ωk( )log ( )fk - fkmsek  . (18)
By substituting Eq. (7) into the objective function in Prob‑

lem (18), it can be easily seen that the form is concave with re‑
spect to uk and to fk. Thus, the optimal solution of them can be 
easily obtained by checking the first order optimality condi‑
tion as follows:

uopt
k = (∑m = 1

K (∑b = 1

B

H̄ H
b,k wb,m ) (∑b = 1

B

wH
b,m H̄b,k) +

σ2
k IMr )-1∑

b = 1

B

H̄ H
b,k wb,k , (19)

f opt
k = mse-1

k , (20)
where

msek = 1 - ∑
b

B

wH
b,k H̄b,kuk. (21)

3.4 Optimizing Phase Shifts
Next, we focus our attention on optimizing the phase shifts 

Φ, based on the optimized u, f and {wb,k,∀b,∀k}. By ignoring 
the unrelated terms, the phase shifts optimization problem is 
presented as

min
Φ

  ∑
k = 1

K

ωk fkmsek  
    s.t.    θl

n ∈ F, ∀l ∈ L, ∀n ∈ N . (22)
This problem is non-convex due to the unit-modulus con‑

straint. Substituting Eq. (3) into Eq. (7) and following some 
further manipulations, the objective function is represented as
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∑
k = 1

K

ωk fk

é

ë

ê
êê
ê∑

i = 1

L ∑
j = 1

L Tr ( )ΦH
i A i,j,kΦ j B i,j +

∑
l = 1

L Tr ( )ΦH
l ( )C l,k - D l,k + ∑

l = 1

L Tr ( )Φ l ( )C l,k - D l,k
H ù

û

ú
úú
ú

, (23)
with the notations as follows:

A i,j,k = H r,i,kuku
H
k H Hr,j,k, (24)

B i,j = ∑
m = 1

K (∑b = 1

B

Gb,j wb,m ) ( )∑
b = 1

B

wH
b,mG H

b,i , (25)

C l,k = H r,l,kuku
H
k ∑

m = 1

K (∑b = 1

B

H H
b,k wb,m ) ( )∑

b = 1

B

wH
b,mG H

b,l , (26)

D l,k = H r,l,kuk∑
b = 1

B

wH
b,kG H

b,l . (27)
By defining vector ϕ l = [ϕl,1,⋯,ϕl,n,⋯,ϕl,N ]

T, and ϕ =
[ϕT1 ,⋯,ϕT

L ]
T, we arrive at Tr (ΦH

i A i,j,kΦ j B i,j) =
ϕH( A i,j,k⊙BT

i,j)ϕ, where ⊙ is a Hadamard product operator. 
For ease of representation, we let Z i,j = (∑k = 1

K

ωk fk A i,j,k)⊙BT
i,j, 

Ẑ = ( )Z1,1 ⋯ Z1,L⋮ ⋱ ⋮
ZL,1 ⋯ ZL,L

, p l = é
ë
êêêê∑k = 1

K ωk fk[C l,k -

D l,k ] 1,1,⋯,∑k = 1
K ωk fk[C l,k - D l,k ]N,N

ù
û
úúúú

T, and p = [ pT1 ,⋯, pT
L ]

T. 
Hence, the optimization of Problem (22) for phase shifts ϕ can 
be reformulated as:

min
ϕ

ϕH Ẑϕ + 2ℜe{pH ϕ}
   s.t.    θl

n ∈ F,∀l ∈ L,∀n ∈ N. (28)
We have F ≜ {θl

n| | ejθl
n | = 1} in the non-convex problem, 

and we notice that the unit modulus constraints form a com‑
plex circle manifold in fact, as

MNL = {ϕ ∈ CNL:| ϕ1,1 | = ... = | ϕL,N | = 1}. (29)
The formed search space is the product of NL circles in the 

complex plane, which is a Riemanifold of CNL with the product 
geometry. Thereby, we propose the Riemannian conjugate gra‑
dient method for the phase shifts optimization. Specifically, 
Problem (28) can be alternately solved by carrying out the fol‑
lowing steps at each iteration r: 1) Firstly, compute the gradi‑

ent in Euclidean space ∇f (ϕr ) = 2Ẑϕ r + 2p*; 2) Compute the 
Riemannian gradient grad  f (ϕr ) = Projϕr

∇f (ϕr )   = ∇f (ϕr ) -
ℜ{∇f (ϕr )⊙ϕ∗

r}⊙ϕ r; 3) Then, update the search direction 
for the RCG method on manifold ηr + 1 = -grad f (ϕr + 1 ) +
βrTϕr → ϕr + 1(ηr ), where Tϕr → ϕr + 1(η t ) ≜ Tϕr

MNL ↦ Tϕr + 1MNL:
   ηr ↦ ηr - ℜe{ηr⊙ϕ*

r + 1}⊙ϕ r + 1 and βr is chosen as the 
Polak-Ribiere parameter; 4) Finally, map the solution into the 
manifold MNL as ϕ r + 1 = Rϕr(αrηr ) with step size αr by re‑
traction operator Rϕr(αrηr ) ≜ Tϕr

MNL ↦ MNL:
  αrηr ↦ vec é

ë

ê
êê
ê
ê
ê ϕ r + αrηr

|| ϕr + αrηr

ù

û

ú
úú
ú
ú
ú .

3.5 Complexity Analysis and Algorithm Supplements
Based on the solutions to the above sub-problems, we imple‑

ment the proposed cooperative distributed beamforming de‑
sign by iteratively updating the variable set {w, u, f, ξ, ϕ}. At 
each iteration, w is optimized locally at each AP, while CPU 
optimizes u, f, ϕ and computes ξ in a centralized mode, which 
is guaranteed to converge at least a locally optimal solution[18]. 
Note that APs need to share the estimated CSI {Hb,k,∀k}, 
{H r,l,k,∀k, l}, and {Gb,l,∀l} with CPU, so the required backhaul 
signaling for CSI exchange is BMt(KMr + NL ) + NLKMr. 
Moreover, according to Section 3.2, each AP needs to receive 
{u, f, ξ, ϕ} from CPU (or initialize them) at each iteration, 
which requires KMr + K + NL + BMt K backhaul signaling, 
and then APs need to feed back {wb,k,∀k} to CPU, which re‑
quires BMt K backhaul signaling. Therefore, the total required 
signaling overhead of the proposed design is BMt(KMr +
NL ) + NLKMr + I (KMr + K + NL + 2BMt K ), where I de‑
notes the number of iterations. It reduces the signaling over‑
head compared with the fully distributed framework, which 
leads to B2(Mt(KMr + NL ) + NLKMr + I (KMr + K + NL +
Mt K ) ) signaling overhead, in the case of large B in the cell-
free network.

In the meantime, the main complexity is dominated by the 
matrix inverse, which involves complexity O (BKM 3

t ), and by 
the gradient computation in the RCG method, which involves 
O (K 2 N 2 L2 ). Compared with the design using semidefinite re‑
laxation (SDR) or convex optimization toolbox, which leads to 
the complexity O (N 3.5 L3.5 ), the proposed approach realized 
great computational complexity reduction.

As a supplement, when the discrete phase shifts are consid‑
ered, we adopt the common solution and approximation projec‑
tion[21], to address the non-convex constraint. The core idea of 
this method is first to obtain a continuous solution θl

n
opt, ∀l,∀n 

that satisfies the unit modulus constraint, and then simply 
project the solution to the nearest discrete value in the set 
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F̂ ≜ ì
í
î
  θl

n| θl
n = e

j 2π ( )x - 1
Δ , x = 1,⋯,Δü

ý
þ
, where Δ = 2b̂ and b̂ is 

the number of discrete bits. It can be written as follows:
θl

n
⋆ = arg min

φ ∈ F̂
| θl

n
opt - φ | ,∀l ∈ L,∀n ∈ N. (30)

4 Simulation Results
In this section, simulation results are presented to demon‑

strate the performance of the proposed cooperative distributed 
beamforming design in the multi-RIS aided cell-free system. 
The numbers of APs, users and RISs are B = 3, K = 3, and 
L = 3, and each AP and user is equipped with Mt = Mr = 2 
antennas. Considering a 3D scenario, three APs are located at 
(0, 100 m, 3 m), ( - 50 3 m,-50 m, 3 m), and 
(50 3 m, -50 m, 3 m), respectively, and users are randomly 
distributed in a circle centered at (0, 0) with a radius of 5 m. 
The height of the users is set as 1.5 m. In particular, three 
RISs are deployed near users right above the points (0, 20 m), 
( - 15 m,-15 m), and (15 m,-15 m), respectively, facing the 
ground with an altitude of 6 m, so that all of them can cooper‑
ate with all APs to serve the users.

For the large-scale fading, we use the urban macro (UMa) 
path loss model in 3GPP specification TR 38.901[22] as the 
distance-dependent channel path loss model, with a carrier 
frequency set as 5.8 GHz. Specifically, the path loss model for 
Gb,l and H r,l,k can be given by LLoS = 43.27 + 22.0  log (d ), 
where d represents the distance between the transmitter and 
the receiver. Meanwhile, due to the randomness of users and 
the long distance between the AP and users, LoS propagation 
may not necessarily be guaranteed for the AP-user channels, 
so the path loss for Hb,k is assumed as LNLoS =
max (LLoS, L′NLoS ), where L′NLoS = 28.81 + 39.08  log (d ). For 
the small-scale fading, we consider the Rician fading channel 
model. Let κAU = 0, κRU = 3, and κAR → ∞ denote the Rician 
factors of the AP-user, RIS-user, and AP-RIS channels, re‑
spectively. The transmit power budget is set as Pb, max = Pmax =
20  dBm, ∀b, the noise power is set as σ2 = -80   dBm, and the 
weight ωk for each user is set as 1 equally.

Fig. 2 illustrates the convergence behavior of all the pro‑
posed algorithms. It can be seen that, when N = 100 and the 
convergence error is not greater than 0.1%, the proposed coop‑
erative distributed beamforming (CD-BF) algorithm converges 
within 15 iterations. Despite the distributed design of active 
beamforming in the proposed method, the convergence perfor‑
mance is almost the same as that of the centralized beamform‑
ing (BF) [11], without causing any performance loss. Besides, 
the cases of discrete bits, random phases, and without RIS 
converge within 15 iterations as well.

Fig. 3 presents the convergence behavior of the proposed 
design under different AP transmit power budgets Pmax and 

varying numbers of elements N. Fig. 3(a) illustrates that as 
Pmax increases, the convergence speed noticeably slows down, 
while the weighted sum-rate performance significantly im‑
proves. Similarly, in Fig. 3(b), it can be observed that as N in‑
creases, the algorithm converges slightly slower but within 20 
iterations. This depicts the good convergence performance of 
the proposed design.

Fig. 4 shows the performance comparison between the pro‑
posed and the centralized algorithm in terms of weighted sum-
rate and CPU running time, with different numbers of reflect‑
ing elements N=100, 200, and 300. First, it is observed that 
both algorithms exhibit almost identical sum-rate performance 

CD-BF: cooperative distributed beamforming algorithm
RIS: reconfigurable intelligent surface

▲Figure 2. Convergence behavior when N=100

(a) N = 100
▲ Figure 3. Convergence behavior under different power budgets and 
numbers of elements N

(b) Pmax = 20 dBm
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under different N. However, due to the proposed cooperative 
distributed design, which avoids high-dimensional matrix cal‑
culations, and the fast optimization speed of the manifold 
method, the proposed one achieves better speed performance 
than the centralized algorithm. In addition, as N increases, the 
runtime of the proposed algorithm remains in the same order 
of 100, while the centralized algorithm’s runtime increases 
from 102 to 103, highlighting the low complexity advantage of 
the proposed algorithm.

Fig. 5 compares the sum-rate performance with the size N 
of RIS. The results indicate that the proposed design achieves 
higher performance gain as N increases, comparable to cen‑
tralized design. Additionally, with the rise of N, the approxi‑

mation loss of low-bit discrete phases becomes larger, which 
implies the significance of the precise phase design when it 
comes to a large size of RIS, while balancing the overhead and 
complexity of channel estimation. Furthermore, we discuss a 
traditional cellular network baseline with multiple small cells 
serving the nearest user in the setting scene without RIS assis‑
tance, where classical zero-forcing (ZF) precoding is used for 
transmission. It can be observed that compared with this base‑
line and the traditional cell-free network without RIS, the RIS-
assisted cell-free system architecture achieves significant 
spectral efficiency improvement.

In Fig. 6, we compare the WSR performance under two dif‑
ferent deployment strategies, namely, the near-AP side and 
the near-user side. In the setting scenario, the results reveal 
that, considering edge users that are far from APs, the near-
user deployment outperforms the near-AP one, regardless of 
continuous or discrete phase shifts. Moreover, it can be seen 
that, even compared with the traditional cell-free scenario 
with B′ = B + L APs, the proposed RIS-aided architecture 
still provides significant gains while being cost-effective and 
energy-efficient.
5 Conclusions

In this paper, we investigate joint active beamforming and 
phase shift design for the multi-RIS aided cell-free system. 
The weighted sum-rate maximization problem under the pro‑
posed cooperative distributed beamforming design framework 
has been considered, which is firstly converted to a tractable 
form by exploiting the relationship between the sum rate and 
the sum MSE. Further, we derive the distributed closed-form 
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solution from the active beamforming and update the phase 
shifts using the RCG method. By iteratively optimizing the two 
objectives across APs and CPU, the proposed design con‑
verges to a stationary point, outperforming the centralized 
framework in terms of lower complexity and equivalent spec‑
trum efficiency. In addition, our numerical results demon‑
strate the remarkable potential of RIS in improving the net‑
work capacity compared with conventional cellular and cell-
free systems.
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